ON THE NUMBER OF POLES OF THE DYNAMICAL
ZETA FUNCTIONS FOR BILLIARD FLOW

VESSELIN PETKOV

ABSTRACT. We study the number of the poles of the meromorphic
continuation of the dynamical zeta functions ny and np for several
strictly convex disjoint obstacles satisfying non-eclipse condition.
For nn we obtain a strip {z € C: Res > #} with infinite number
of poles. For np we prove the same result assuming the boundary
real analytic. Moreover, for ny we obtain a characterisation of g3
by the pressure P(2G) of some function G on the space EQ related
to the dynamical characteristics of the obstacle.

1. INTRODUCTION

Let Dy,...,D, CR% r >3, d > 2, be compact strictly convex dis-
joint obstacles with C'* smooth boundary and let D = U;Zl D;. We
assume that every D; has non-empty interior and throughout this pa-
per we suppose the following non-eclipse condition

Dy, N convex hull (D; U D;) = 0, (1.1)

for any 1 < 7,7,k < r such that ¢ # k and j # k. Under this condition
all periodic trajectories for the billiard flow in = R\ D are ordinary
reflecting ones without tangential intersections to the boundary of D.
We consider the (non-grazing) billiard flow ¢; (see Section 2 for the
definition). Next the periodic trajectories will be called periodic rays.
For any periodic ray v, denote by 7(v) > 0 its period, by 7%(y) > 0
its primitive period, and by m(v) the number of reflections of v at
the obstacles. Denote by P, the associated linearized Poincaré map
(see section 2.3 in [PS17] and Section 2 for the definition). Let P be
the set of all oriented periodic rays. Notice that some periodic rays
have only one orientation, while others admits two (see [CP22, §2.3]
for more details). Let IT be the set of all primitive periodic rays. Then
the counting function of the lengths of periodic rays satisfies

hx
Hyell: 7)<} oy oo 4o, (1.2)

for some h > 0 (see for instance, [PP90, Theorem 6.5] for weakly mixing

suspension symbolic flow and [[ka90a], [Mor91]). Hence there exists an
1
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infinite number of primitive periodic trajectories and applying (1.2),
for every sufficiently small € > 0 one obtains the estimate

o<ty eP: 7(y) <z} <M o> 0> 1.
Moreover, for some positive constants ci, Cy, f1, fo we have (see for
instance [Pet99, Appendix| and (A.1))
e | det(ld — P,)| < Che™ 4 e P.
By using these estimates, define for Re(s) > 1 two Dirichlet series

57(7) Tﬂ(ry)e_ST(ﬁy)
— —1)mM
Z |det Id Py ) 21 [det(Id — P,)[1/2’

yEP

where the sums run over all oriented periodic rays. The length 7%(v),
the period 7(v) and | det(Id— P,)|'/? are independent of the orientation
of v. We consider also for ¢ > 1, ¢ € N, the zeta function

Tﬁ(fy)e_ST('Y)
= R 1.
na(s) = q Z ]det(Id—PW)P/?’ es >
YEP,m(7)EGN

Clearly, ny(s) = mi(s). These zeta functions are important for the
analysis of the distribution of the scattering resonances related to the
Laplacian in R?\ D with Dirichlet and Neumann boundary conditions
on 0D (see [CP22, §1] for more details).

It was proved in [CP22, Theorem 1.1 and Theorem 4.1] that 7, ad-
mit a meromorphic continuation to C with simple poles and integer
residues. We have the equality

np(s) = ne(s) —m(s), Res > 1, (1.3)

hence np admits also a meromorphic continuation to C with simple
poles and integer residues. The functions 7,(s) are Dirichlet series
with positive coefficients and by a classical theorem of Landau (see for
instance, [Ber33, Théoreme 1, Chapitre IV]) they have a pole s = a,,
where a, is the abscissa of convergence of 7,(s). On the other hand,
from (1.3) it follows that some cancelations of poles are possible. In
this direction, for d = 2 [Sto01] and for d > 3 under some conditions
[Stol12] Stoyanov proved that there exists ¢ > 0 such that np(s) is
analytic for Res > a; — €. The same result has been proved for d = 3
and a; > 0 by Ikawa [Ika00].

The purpose of this paper is to prove that n,(s) has an infinite num-
ber of poles and to estimate S € R such that the number of poles
with Res > [ is infinite. The same questions are more difficult for
np(s) since the existence of at least one pole has been established only
for obstacles with real analytic boundary [CP22, Theorem 1.3] and for
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obstacles with sufficiently small diameters [[ka90b], [Sto09]. Clearly,
a; < a;. We have ay = a4, since if ay < ay, the function 7np will
have a singularity at a; which is impossible because np is analytic for
Re s > ay (see [Pet99, Theorem 1]).

Denote by Resn,, Resnp the set of poles of 7, and 7np, respectively.
For Res 1, we prove the following

Theorem 1.1. For every 0 < § < 1 there exists a4 < ag such that for
a < 54 we have

Huj € Resng = Repyy > a, |uy| <r} # O(°). (1.4)
If the boundary 0D s real analytic, the same result holds for Res np.

More precisely, we show that for any 0 < § < 1 there exists a5, < 0
depending on the dynamical characteristics of D such that if o < asg,
for any constant 0 < C' < oo the estimate

#{u; € Resny: Repy > a, || <7} <Cr°, r>1

does not hold. Similar results have been proved for Pollicott-Ruelle res-
onances for Anosov flows [JZ17, Theorem 2], for Axiom A flows [JT23,
Theorem 4.1] and for Neumann and Dirichlet scattering resonances for
obstacles D satisfying (1.1) in [Pet02] and [CP22, Theorem 1.3], re-
spectively. According to Theorem 1.1, it follows that for large A > 0 in
the region Dy = {z € C: Rez > —A} there are infinite number poles
1 € Resn; NDy4 and infinite number poles v € Resny ND 4. Therefore if
np is analytic in D4, by (1.3) we deduce that we must have an infinite
number of cancellations of poles p with poles v and the corresponding
residues of the cancelled poles ;1 and v must coincide. For obstacles
with real analytic boundary Theorem 1.1 shows that this is impossible.

Remark 1.1. The proof of Theorem 1.1 works if the function np is
not entire. As we mentioned above, this holds for obstacles with real
analytic boundary.

It is interesting to find the maximal number 3, < a, such that the
strip {z € C: Rez > f3,} contains infinite number poles of 7, and to
obtain so called essential spectral gap. This is a difficult open problem.
Let by < a4 be the abscissa of convergence of the series

Tﬁ(fy)e_ST(’Y)
Res > 1 15
2. [det(ld — P %7 (1.5)

v:m(v)€gN

and let @ = max{0,a;}. In our second result we obtain a more precise
result for Res ;.



4 V.PETKOV

Theorem 1.2. For any small € > 0 we have
#{p; € Resmy : Rep; > (2d* +2d — 1/2)(by — 2a) — €} = 00. (1.6)
Notice that
2d% +2d —1/2 =2(d* +d — 1) + 3/2 = 2dim G + 3/2,

where G is the (d—1)-Grassmannian bundle introduced in Section 2. In
Appendix we prove that b; coincides with the abscissa of convergence

of the series
Z T ﬁ(W)
— | det(Datpriy)| mu())|

)

, Res > 1, (1.7)

where E,(x) is the unstable space of x € v (see (2.1) for the nota-
tion). By using symbolic dynamics, we define (see (A.3)) a function
G(&,y) < 0 on the space ZQ related to dynamical characteristics of D
(see Appendix) and prove the following

Proposition 1.2. The abscissas of convergence a; and by are given by
a; = P(G), by = P(2G), (1.8)
P(G) being the pressure of G defined by (A.2).

For a; < 0 we have o = 0 and Theorem 1.2 is similar to [JZ17, Theo-
rem 3| established for weakly mixing Anosov flows ¢y, where instead of
b1 = P(2G) one has the pressure P(2¢") < 0 of the Sinai-Ruelle-Bowen
potential

d
P(z) = T (1082 | det wat‘Eu(:c)D li=o0-
Notice that for Anosov flow one has P(y") = 0, (see [BR75, Theorem
5]), while a; = P(G) can be different from 0. More precise results for

the poles of the semi-classical zeta function for contact Anosov flows
have been obtained in [FT13], [FT17, Theorem 1.2].

Remark 1.3. The constant 2d* + 2d — 1/2 in (1.6) is related to the
estimate (3.3) of Fourier transform F; in the local trace formula for
n1(s) (see Theorem 3.2) and probably it is not optimal. A better esti-
mate of FA,l can be obtained if the bound of the number of poles (3.1)
is improved (see for example, [AFW17], where the Hausdorff dimension
of the trapped set K is involved).

We have b; = by since the series

Z (=1)"N 7 (y)ems70)

,Res > 1 (1.9)
| det(Id —P,)]
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is analytic for Re s > b;. We discuss this question at the end of Appen-
dix. Theorem 1.2 can be generalized for Res 7, and one obtains (1.6).
The proof works with some modifications.

The paper is organised as follows. In Section 2 we collect some defini-
tions and notations from [CP22] which are necessary for the exposition.
In particular, we define the non-grazing billiard flow ¢;, the (d — 1)-
Grassmannian bundle G, the bundles &, over G and the operators
P 0<k<d 0</(< d?. In Section 3 we obtain local trace formu-
las combining the results in [JT23, §6.1] and [CP22, Lemma 3.1]. In
Section 4 we prove Theorems 1.1 and 1.2. Finally in Appendix we use
symbolic dynamics and establish Proposition 1.2.

Acknowledgements. We would like to thank Long Jin, Frédéric Naud
and Zhongkai Tao for the useful and stimulating discussions.

2. PRELIMINARIES

We recall the definition of billiard flow ¢; described in [CP22, §2.1].
Denote by SRY the unit tangent bundle of R? and by 7 : SR? — RY
the natural projection. For x € 0D;, denote by n;(z) the inward unit
normal vector to 0D, at the point x pointing into D;. Set

D = {(z,v) € SR : v €9D}.

We say that (z,v) € Typ,(R?) is incoming (resp. outgoing) if we have
(v,n;(z)) >0 (resp. (v,n;(x)) < 0). Introduce

Din = {(z,v) € D : (x,v) is incoming},
Douws = {(z,v) € D : (x,v) is outgoing}.
Define the grazing set D, = T(0D) N'D and obtain
D = Dy U Dy U Do,

The billiard flow (¢;)er is the complete flow acting on SR\ 7=(D)
which is defined as follows. For (x,v) € SR?\ 771(D) set

Ti(x,v) =xinf{t > 0: 2+ tv € OD}.

For (z,v) € Din/out denote by v" € Doy /in the image of v by the reflexion
with respect to T,(0D) at x € 0D;, given by

v =v—2(v,ni(z))n;(z), veS,RY, xe€dD;.
Then for (z,v) € (SR \ 77 1(D)) U D, define

oOi(z,v) = (z+to,v), tE [t (x,v),7(x,0)],
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while for (z,v) € Din/out, We set

(x,v) € Dous, t € [0, 74 (z,v)],

Oi(z,v) = (z+tv,v) if {

or (x,v) € Dy, t € [T_(x,v),0],
and
(x,v) € Dy, t €10, 74 (z,v)],

dlw,v) = (@40, 0) i {Or (#,v) € Dous, t € [r—(z,0),0][.

We extend ¢, to a complete flow still denoted by ¢, having the property
Gurs(w,v) = ¢u(ds(w,0)), ts €R, (w,v) € SR\ 7 (D).

Next we introduce the non-grazing set M as
M=B/~, B=SR\ (n—l(f)) uDg> ,

where (x,v) ~ (y,w) if and only if (z,v) = (y,w) or

/

r=yedD and w=v.

The set M is endowed with the quotient topology. We change the
notation and pass from ¢; to the non-grazing flow ¢;, which is defined
on M as follows. For (x,v) € (SR?\ 77(D)) U Dj, define

9025([(3:71])]) = [(bt(xav)]a tE]T%(QZ,U),T_%(%,U)[,
where [z] denotes the equivalence class of z € B for the relation ~, and
78 (z,v) = £inf{t > 0: ¢(z,v) € Dy}

Thus ¢, is continuous, but the flow trajectory of (z,v) for times t ¢
|78 (x,v), 7% (z,v)[ is not defined. Clearly, we may have 75 (x,v) = o0,
while 7§ (z,v) # 0 for (z,v) € D;,. Note that the above formula indeed
defines a flow on M because each (z,v) € B has a unique representative
in (SR%\ 7~ (D)) U Dy,.Following [DSW24, Section 3], we may define
smooth charts on M = B/ ~ and ¢; becomes C'* non complete flow
with respect to new charts.

Throughout we work with the smooth flow ¢; and denote by X its
the generator. Let A(z) = {t € R : w(p(2)) € OD}. The trapped set
K of ¢ is the set of points z € M which satisfy —78(z) = 7%(2) = 400
and

sup A(z) = —inf A(2) = +oo.
By definition, ¢;(z) is defined for all ¢ € R whenever z € K. The flow
@y is called uniformly hyperbolic on K, if for each z € K there exists a
decomposition
T.M =RX(2) ® E,(2) ® Es(2), (2.1)
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which is dys-invariant with dim E,(z) = dim E,(z) = d — 1, such that
for some constants C' > 0, v > 0, independent of z € K, and some
smooth norm || - || on 7'M, we have

Ce o], we By(2),
CeM|jv]|, v € Ea(2),

The spaces E,(z) and E,(z) depend continuously on z (see [Has(2,
Section 2]).

The flow ¢, is uniformly hyperbolic on K (for the proof see [CP22,
Appendix A]). Take a small neighborhood V' of K in M, with smooth
boundary and embed V' into a compact manifold without boundary V.
We extend arbitrarily X to obtain a smooth vector field on N, still
denoted by X. The associated flow is still denoted by ¢;. Note that
the new flow ¢, is now complete. Introducing the surjective map

o B2 (x,8) = [(x,8)] € M,

we have @0y, = 00, and there is a bijection between periodic orbits
of ¢; and ¢, presevering the periods of the closed trajectories of ¢,
while the corresponding Poincaré maps are conjugated (see [DSW24,
Section 3]).

Consider the (d — 1)-Grassmannian bundle

ma:G— N
over N. More precisely, for every z € N, the set 7' (2) consists of all
(d — 1)-dimensional planes of T, N. The dimension of 7' (2) is d(d —1)
and G is a smooth compact manifold with dim G = d?>+d —1 . We lift
¢ to a flow ¢; : G — G defined by

@t(sz) = (@t(z)vdspt(z)(E)% S Na E C TzNa d@t(z)(E) C TSDt(z)N-

Introduce the set

)

t=>0
d ol 2.2
ldgi(z) o] { <o 22

K,={(z,E,(2)) : z€ K} CG.

Clearly, K, is invariant under the action of &y, since depy(2)(E,(2)) =
E.(:(2)). The set K, will be seen as the trapped set of the restriction
of ¢; to a neighborhood of K, and the flow ¢y is uniformly hyperbolic
on K (see [BR75, Lemma A.3], [(P22, §2.5]). Let X be the generator
of ¢; and let ‘7” be a small neighborhood of I?u in G with smooth
boundary 9V, (see[CP22, §2.7]). Define

Iy(X)={zeV,: &i(2) €V,, Ft>0}

Denote by clos V. the closure of ‘7% Let p € C'OO(CNIOS Vi, R, ) be the
defining function for V,, such that 0V, = {z € clos V,, : p(z) = 0} and
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dp(z) # 0 for any 2 € V. Following [GMT21, Lemma 2.3], for any
small neighborhood Wo of 9V, there exists a vector field Y on clos V,

arbitrary close to X in C*-topology and flow ?/Jt generated by Y with
the properties:

(1) supp (Y — X) C W.

(2) (gonvexity condition) For any defining function p of V, and any
w € dV, we have

Yp(w) =0 = Y?p(w) < 0,
(3) T'L(X) =T4(Y), where I's(Y) is defined as above by 1.

By [DG16, Lemma 1.1], we may find a smooth extension of Y on G
(still denoted by Y') so that for every w € G and T > 0, we have

w,ir(w) €clos V, = y(w) € clos V,, Vt € [0,T]. (2.3)

In the following we fix \N/u, Wo,Y and the flow ¢, with the properties
mentioned above. Thus we obtain an open hyperbolic system satisfying
the conditions (A1) — (A4) in [DG16, §0] (see also [JT23, §2.1]).

Next repeating the setup in [CP22, §2.6], we introduce some bun-
dles passing to open hyperbolic system for bundles. First, define the
tautological vector bundle &€ — G by

E={(w,u) e (TN) : weqG, ue wl},

where [w|] = E denotes the (d — 1) dimensional subspace of Ty )N
represented by w = (2, E) and «5(T'N) is the pullback bundle of T'N.
Second, introduce the ”vertical bundle” F — G by

F={(w,W) eTG : drg(w)-W =0},

which is a subbundle of the bundle T'G — G. The dimensions of the
fibres £, and F, of £ and F over w are given by

dim&, =d—1, dimF, =dimkerdrg(w)=d* —d
for any w € G with mg(w) = 2. Finally, set
Ei=NEQNF, 0<k<d-1, 0<(<d—d,

where £* is the dual bundle of £, that is, we replace the fibre &, by its
dual space &.
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Next we use the notation w = (2,7) € G and u @ v € &gyl By

using the flow 1, introduce a flow @f’z 2 Erp — Epy by
o (w,ugv) = (Vu(w), biw)- | (de(re(@) ™)™ () @ dd(w)“©)]),
(2.4)

with
bi(w) = | det dgy (7 (w))]w] /2 - | det (dlzt(wﬂkerdm) I,
where T denotes the inverse transpose. Consider the transfer operator
OB C(G, Ey) — CF(G, Ery)

defined by

P u(w) = o u(w)], weC®(G &)  (25)
and let Py : C™(G, Ey) — C™(G,Ey) be the generator of &0
defined by

, uec COO(G,g]@g).

t=0

d .
iju = &(@lﬁf’ u)

We obtain
Pio(fu) = (Preflu+ f(Preu), f € CP(G), ue CF(G, Eryp).

Notice that we obtain the same setup as in Definition 6.1 in [JT23,
§6.1]. In the last paper the authors deal with a general Axiom A flow
with several basic sets. In our case we have only one basic set and
we may apply the results of [DG16] and [JT23]. With some constant
C > 0 we have

||6_th’£||L2(G,5k,£)—>L2(G,gk,é) <Ce >0

and
(Pre+s)' = / e Prets)qr . [2(G, Epe) — L*(G, Ers), Res > 1.
0

Introduce the operator
Rhg(S) = ]_‘7u (Pk’g—Q—S)illf/u . C:o("?u,gk!) — ’D/<‘7u,5k,g>, RG(S) > 1,

where D’ (\ZL, Eke) denotes the space of & -valued distributions. Apply-

ing [DG16, Theorem 1], we obtain a meromorphic extension of Ry ¢(s)

to the whole plane C with simple poles and positive integer residues.
For w € G and t > 0 consider the parallel transport map

af”ﬁ = Mt Q02 Aké’:; ® Ae]:w — Ak&zt(w) ® Azfil;t(w)
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given by ~
u@ v (eTH(uev))(¥(t),

where u, v are some sections of £ and F, over w, respectively. The
definition does not depend on the choice of u and v (see [DG16, Eq.
(0.8)]). For a periodic trajectory 7 : t — J(t) = (y(t), Eu(y(t)) with

period T we define
t ( k.l k.l
as 5(),T

(see [DG16], [CP22]) and the trace is independent of the choice of the
point (t) € 7.

Finally, if ¥ € C’é’o(f/u) is equal to 1 near the trapping set K, we have
the Guillemin trace formula (see [DG16, (4.6)], [SWB23, §3.1],[CP22,
§3.2]) with the flat trace

) =tra

TP = 3 7F(7) tr(a57)o(t — T(’V))’ (=0 (2.6)

tr’(Ye =
= | det(Id —P,)|
Here both sides are distributions on (0,00) and the sum runs over all
periodic orbits ¥ of ¢,
P’y = d{b/—T('Y) (wﬁ/) |Eu(W»7)®Es (w@)

is the linearized Poincaré map of the periodic orbit ¥(t) of the flow @,
and w5 € Im(¥) is any reference point taken in the image of 7.

To treat the zeta function related only to periodic rays with number
of reflections m(7y) € ¢gN, ¢ > 2, we consider the setup introduced in
[CP22, §4.1] and we recall it below. For ¢ > 2 define the g-reflection
bundle R, — M by

Ry = ([SRd\ <7r—1(1°)) uDg)} x Rq>/ ~, (2.7)
where the equivalence classes of the relation ~ are defined as follows.
For (z,v) € SR%\ <7r*1(lo)) U Dg> and ¢ € R?, we set

(2,0, )] = {(2,v,8), (x,0', Alg) - )} if (#,v) € Din, (2,0") € Do,
where A(q) is the ¢ X ¢ matrix with entries in {0, 1} given by
0 1

1 0
Clearly, the matrix A(q) yields a shift permutation
A<q)(§1a 527 ey gq) = (6‘17 él) sy fq—l)-
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This indeed defines an equivalence relation since (z,v") € Dy, when-
ever (x,v) € Di,. Note that
Alg)?=1d, trA(q =0, j=1,...,q— 1 (2.8)

Define a smooth structure of R, as in [CP22, §4.1] and introduce the
bundle
5]3,[ = Ek,é & WZ;'R(],
where 7R, is the pullback of R, by mg so ngR, — G is a vector
bundle over G. Consider a small smooth neighborhood V' of K. We
embed V into a smooth compact manifold without boundary N, and
we fix an extension of R, to N. Consider any connection V7 on the
extension of R, which coincides with d? near K, and denote by
Fa(2) : Rq(2) = Rylpe(2))
the parallel transport of V7 along the curve {¢,(z) : 0 <7 <t}. We
have a smooth action of ¢ on R, which is given by the horizontal lift
of ¢,
0i(2,8) = (e(2), Faa(2) - §),  (2,€) € Ry

We may lift the flow ¢, to a flow &% on &L, which is defined locally

near l?u by

O w,u @ v @ E)

= (Ziw), bu(w@) - [ (derlma(@) ™)™ () ® (@) (v) ® Pral2) - €] )

for any w = (2, F) € G, u®v®§ € & (w) and t € R. Following [CP22,
§4.1], we deduce that for any periodic orbit v = (¢7(2))rcp,(y), the
trace

tr(Pm) = tr<Pq7<p

if m(y)=0 mod gq,
)= {q (7) q 29)

0 if m(y)#0 modgq
is independent of z. Define the transfer operator
PP C(GLEL,) — C(G,EL)
by
OEy M u(w) = ) u(@-y(w)], u € C¥(G, &)
and denote by Py, be the generator of ®*“¢*. As above, we obtain
the flat trace

> 7¢(7) tr(af)é(t — 7(7))

_ > 0.
| det(Id—P,)|

0 (Fe PR = g
¥m(ra(7))€qN

(2.10)
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We close this section by the following
Lemma 2.1 (Lemma 3.1, [CP22]). For any periodic orbit 5 of the flow
©y related to a periodic orbit v, we have

d—1 d?—d
1)kt tr( ) = | det(Id —P,)|7V/2.

M

|det (Id — P7 | = é:O

3. LOCAL TRACE FORMULA

In this section we apply the results of [DG16] and [JT23, §6.1] for vec-
tor bundles. For simplicity we will use the notations &, = 5,%1, Py, =
Py, ete. For x € CgO(f/u) such that ¥ = 1 near K, by [DG16] and
[JT23, §6.1] we conclude that for any integer ¢ € N

%(—iPk%q + s)_li

has a meromorphic continuation to C. Denote by Res (—iPy ) the set
of the poles of this continuation. Then for any constant § > 0 it was
proved in [JT23, (6.3)] that we have the upper bound

fRes (—iPpg) N{A €C, [ReA = E| <1, Im A > —f} = (O(Eﬂﬁﬂé—l)j
3.1
In particular, there exists C' > 0 depending of 3 such that
tRes (—iPrsg) N{A € C, |N| < E, ImA > -8} < CEXH 1 C.

Notice that the power d?+d—1 comes from dim G. Next for Res(—iPy )
we obtain as in [JT23] the following local trace formula.

Theorem 3.1 (Theorem 1.5 and (6.5), [JT23]). For every A > 0 and
any q € N there exists a distribution Fj’e’q € §'(R) supported in (0, 00)

such that
> e M+ FYN(t)

puERes (—iPy g q) Imp>—A

7 (7) tr(a5)é(t — 7(7))
2 | det(Id —P,)|

,t>0. (3.2k7qu)
7, m(v)€qN

Moreover for any € > 0 the Fourier-Laplace transform Fj’z’q()\) of
F¥5(t) is holomorphic for Im A < A — € and we have the estimate

|FRYO)| = O enpg(l+ [A)2EH21H ImA < A — e (3.3)

Here v = g (7).
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As it was mentioned in [JT23, Section 6], the proof in [JT23, Sec-
tion 4] with minor modifications works in the case of vector bundles.
Combining the above result with Lemma 2.1, we obtain

Theorem 3.2. For every A > 0 and any € > 0 there exists a distribu-
tion Fa, € S'(R) supported in (0,00) with Fourier-Laplace transform
Fy 4(X\) holomorphric for Im\ < A — € such that

Z Z (_1)19*56*1#15 + FA,q(t)

k=0 =0 p€Res (—iPpq),Impu>—A

TH()(t = 7(7))
> |deZ(Id—P7)|71/2’t>O’ (3.4,)

v, m(v)€qN

where Fa,(\) = 320, Z?igd(—l)k”ﬁj’e’q()\) satisfies the estimate

Choosing ¢ = 1, we obtain a local trace formula for Neumann dy-
namical zeta function ny(s), introduced in Section 1. For the Dirichlet
dynamical zeta function np(s) given in Section 1 we use the represen-
tation (1.3) and applying (3.4), with ¢ = 1, 2, we obtain the local trace
formula

Z Z (_1)k+Z€—iut

k=0 (=0 pecRes (—iPy¢2),Imp>—A

d
> (—1)F+le™m 4 Fyo(t) — Faq(t)
k=0 (=0 pecRes (—iPpyg,1),Imp>—A
-y (=1)"I7H(y)é(t — (7))
| det(Id — P,)[1/2

,t>0. (3.5)

Some resonances pt € Res (—iPyy,), kK + ¢ odd,q = 1,2 may can-
cel with some resonances v € Res (—iPy,), k + ¢ even,q = 1,2 and
appriori it is not clear if the meromorphic continuation of dynamical
zeta functions 7y (s) and np(s) have infinite number poles. Notice that
all poles are simples and the cancellations in (3.4), could appear for
terms with coefficients + and — related to k + ¢ even and k + ¢ odd,
respectively. On the other hand, in (3.5) we have more possibilities for
cancellations of poles.
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4. STRIP WITH INFINITE NUMBER POLES

Proof of Theorem 1.1. We will prove Theorem 1.1 for np since the
argument for 7, is completely similar and simpler. After cancelation
all poles p at the left hand side of (3.5) satisfy Im p < av = max{0, a; }.
To avoid confusion, in the following we denote by i the poles p in
(3.5) which are not cancelled. Assume that for some 0 < § < 1 and
0<k<gq 0<0<¢*—q, q=1,2 we have estimates

NA7k7g7q(’l“) = ﬂ{ﬁ € Res (—Z.P]@g,q) : |ﬁ’ <r —-A< Imﬁ < CY}

< P(Ak,£,q,0)r. (4.1)

We follow the argument in [JZ17, Section 5] and [CP22, Appendix B
with some modifications. Let p € C§°(R;R;) be an even function with
supp p C [—1, 1] such that

pt)>1 it <1/2,
and

pl—=N\) = /emp(t)dt >0, keR.
Let (¢;)jen and (m;)jen be sequences of positive numbers such that
l; > do = mingy, dist (D, D,,) > 0, m; > max{l, dio} and let ¢/; —
00, mj — 00 as j — 00. Set
pi(t) = p(m;(t —€;)), tER,

and introduce the distribution Fp, € S'(R*) by

—1)mO ()0 (t — T

YEP
We have the following proposition established by ITkawa.

Proposition 4.1 (Prop. 2.3, [Ika90a]). Suppose that the function s +—
np(s) cannot be prolonged as an entire function of s. Then there exists
ag > 0 such that for any > o we can find sequences (¢;), (m;) with
l; — 00 as j — oo such that for all j = 0 one has

i <my <Y and  |(Fo,p;)| = e b,

We apply the local trace formula (3.5) to function p;(t). For —A <
Im ¢ < a we have

~ -1 . —il; —1 _al; m._lmaxa, - -
16;(Q) = mj |p(m Qe < Cymytettmmae A (1 4 jm 1))V,
Then for ¢ = 1,2 and —A < Imp < o we obtain

| > (e (1))

Impi>—A, i€Res (—iPy ¢,q)
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< C’N,Amj’leaej /0 (1+ m;lr)’NdNA,k,e,q(r)

—_C —104€jood 1 “I)N)N d

= ~Cwam; e | e ) Akd,q(T)dr

< ByaP(Ak Lo,y e [ (1) Yy
0

= ANP(Ak,{,q, 5)m;(1’5)ea‘v’j < Dppqoet PO+

Next, applying (3.3), we have

Fuanr) = [ Fra-0ps0dc = [ Fas-0p(0)C
R R+i(e—A)
and choosing M = 2d? + 2d + 1, we deduce
[(Fag, pj)| < CM,A,qm]-_le(€_A)Ej em; | max{A—eal

X/O+kquw”“ﬂ*lmdeMﬂ

— . 2 _ B _ ) B .
< DM,A,qe(E A)éjm?d +2d—1+e < DM,A,qe(e AV 2(2d>+2d—1+6)BY;

According to [CP22, Theorem 1.3] for obstacles with real analytic
boundary, the function 7np is not entire and we may apply Propo-
sition 4.1. Taking together the above estimates and summing for
0<k<d 0<{<d®>—dand qg=1,2, we get

DAe(—ﬁ(l—Ls)-‘rOé)Z]’ + EAe(e—A)fj 62(2d2+2d—1+6)ﬁ34j > e—aoé]' )

Here the constants D4 and E4 depend of A but they are independent

of ¢;. We choose 3 > %. We fix f and 0 < € < 1 and choose
A>202d* +2d — 1+ €)B + € + ay.

Fixing A, for ¢; — oo we obtain a contradiction. This completes the

proof of Theorem 1.1 for np.

To deal with Res n,, ¢ > 2, we choose a periodic ray 7, with ¢
reflections, ¢; = j7%(7,), m; = €’ and apply the lower bound

Z ()t — 7(7)) o
I \det(Id_p7)|1/2an>| > ce %, V5 >0
N

v, m(v)€Eq

with ¢ > 0,¢9 > 0 independent of ¢;. For ¢ = 1 we choose {; =
J7(7), m; = €% with some periodic ray v and obtain the above esti-
mate. Repeating the argument for np, we prove (1.4). B
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Proof of Theorem 1.2. We follow the approach of F. Naud in [JZ17,
Appendix A]. Let 0 < p € C§°(—1, 1) be the function introduced above.
For ¢ € R and ¢ > max{dy, 1} introduce the function

Pre(s) = e'p(s — 1), £ €R.

We apply the trace formula (3.4); to ¢1¢. As above denote by g the
poles which are not cancelled in the left hand side of (3.4);. Assume
that for 0 < k < d and 0 < ¢ < d* — d we have

t{it € Res (—iPy;): —A—e<Imp<a}=P(Akle) <oo. (4.3)
First, we have
[ee (O] < Cye ™1 4 [Re¢ — )™

For —A < Impy < o and N = 1 the sum of terms involving poles 1

in (3.4); can be bounded by %j with constant C7 > 0 depending of

P(A,k, 0 ¢€) and exp(max{A,a}). Second, by using (3.3) for FA,l, one
deduces

’<FA 1,¢t5)| < 02@ A)(t— 1)( + ’5‘)2d2+2d—1+e'

Setting
S(t.6) = T () p((7) — 1)
’ | det(Id —P,)| /2~
we get
C eat 2 Cae
1S(t,€)| < 1—1F|§|+CA€ —9t(]  [¢]) 2021k

Now consider the Gaussian weight
G(t, o) = o2 / IS(t, )27 2dg, 0 < o < 1.
R

The estimate for |S(¢,&)| yields

02 2at

e T 2CheT T A gl e

S(t I <

and
G(t 0) < C" 1/2 2at+01 —(2d2+2d—1+e€) e 2(A=ot (4'4)



ON THE NUMBER OF POLES 17

On the other hand, taking into account only the terms with 7(v) =
(7)), we get

C%t0J==v§?§E:§:7JVﬂTWr) —O=r 20 (7 () = )p(r(v) — 1)

/
(&
det(Id — P, )[/2| det(Id — )| /2

>e Y ) det(Id P!

t—1/2<7(y)<t+1/2

(4.5)
with ¢ > 0 independent of ¢ and o.
t
Set 7(y) = T, TH(y) = ng, ay = |det(1§—v—}%)|‘ Recall that b; is the

abscissa of convergence of Dirichlet series (1.5) with ¢ = 1.

Case 1. b; < 0.
Let the lengths of the periodic rays be arranged as follows

T<Ty<.. <T,<..
It is well known (see for instance, [Cot17]) that

log a
by = lim sup | ZT"ST” il .

n—oo T’I’L

We fix a small ¢ > 0 so that — = b; — 3¢/2 < 0.There exists an
increasing sequence n; < ng < ... < n,, < ... such that limn; = 400
and

log | ZT,L], <7, s |

T,

> bl — €. (46)

Choose m large so that

—0T, .
(&

1> P42 2 > e

Set ¢ =T, and write

IR SIND SRS

1 <Ty k=1 ka1 <Ty<(k+1)q1
Assume that we have the estimates
Z a, < ek vk > 1. (4.7)
kg1 <Ty<(k+1)q1
Then
> 1 1
—0q1 —joq1 _ ,=0q1 ___— . ~ (=0+€/2)q
ZaVSe Ze € 1_ef6q1<26 ’
q1<Ty Jj=0
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Since —0 + €/2 = by — €, we obtain a contradiction with (4.6) for 7, .
Consequently, there exists at least one k; > 1 such that
Z a, > e ok, (4.8)
k1g1 <Ty<(k1+1)q1
The series ZTWZ(M g ae~*> has the same abscissa of convergence
b1. We repeat the procedure choosing g, > (k1 + 1)¢1, and obtain the
existence of k9 > 1 such that

Z a, > e ke, (4.9)
koqa<Ty<(k2+1)g2
By iteration we find two sequences {g;}, {k;} such that
G+ > (b +1)g5, k; = 1,
and a sequence of disjoint intervals
[qu]', (k] + 1)(]]], ] = 1,2,
so that
Z a, > e ki, (4.10)
kja; <Ty<(kj+1)g;
The periods ¢; may change applying the above procedure but for sim-
plicity we use the same notation.
Next, suppose that

E ay, <e /g p=0,1,..,q¢ — 1
kjqj+p<Ty<k;jqj+p+1

By using triangle inequality, we obtain a contradiction with (4.10).
Thus for some 0 < p; < ¢; — 1 we have

Z a’y Z efaquj/qj > 6(7676/2)1%(1]'_
kjqj+p; <Toy<kjqj+pi+1
Choosing t; = k;q; + p; + 1/2, we deduce
Z a’y Z €(bl_26)tj.
t;—1/2< Ty <t;+1/2
Therefore from (4.4) and (4.5) with ¢t = t; we obtain
6101/262005]- + 620_(2d2+2d—1+e)6—2(A—e)tj > 6(171—25)75]- (4.11)
with constants ¢, co > 0 independent of ¢;. Now choose
o= 01—262(b1—36—2a)tj < 1

Since
by — 3e — (by — 2¢€) + 2e = ¢,
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we have
e~€li 4+ 63672(2d2+2d71/2+6)(b173672a)tj672(A7(1/2)6)tj > 1.

Taking
bl — 2«

A= —(2d* 4+ 2d — 1/2)(b; — 2a) + 3e(2d* + 2d — +€)

and letting ¢; — 400, we obtain a contradiction. Consequently, for
some 0 < ky < 0,0 < ¥y < d*—d, setting € = 36(2d2+2d—b1*%+6)+6,

we have
{11 € Res (—iPy, ) : Imp > (2d* 4+ 2d — 1/2)(b) — 2a) — &} = <.

This implies (1.6) with e replaced by €, observing that the poles 1 €
Res (—iPy, 4,) coincide with the poles A of the meromorphic continua-

tion of 7y (i\).

Case 2. b; > 0.
For b; we have the representation

log | ZngTn iy |

b1 = lim sup
n—oo Tn

We fix a small € > 0 so that b; — 2¢ > 0. For every small ¢; > 0 the
estimates for the numbers of periodic rays in Section 1 imply

eh=a)Tn < < ehte)ln 0 > O, (4.12)
We choose €; = %e and arrange
h — € 3 3 26, 3
by — =€) = (by — =€) — by — =
hra 9= timg9 - gt =39
3 261b
Ly — 2. (4.13)

> (b — =€) —
(b — S0 - =L
There exists an increasing sequence n; < ng < ... < n,, < ... such

that limn; = +00 and
log | ZngTnj s |
T,

> by —e (4.14)

Set logny = p; for T,,, large using (4.12), we get

(72

F—ey)
DRI S SRS

Ty <Tn, k=0 k<T,<(k+1)
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For simplicity of the notation set dy = by — %e > (. Assume that for

kE=0,.., [hflel] we have

h—eq

E G~ < €h+51d1k.

k<Ty<(k+1)

This implies

g S _

]
h— eldk
h+e
Z aﬂy< Ze ! h—ey

d
T, <Th, ehra® — 1

Applying the inequality e — 1 > z for x > 0 and exploiting (4.12), we
deduce

e[ 1+1) el tomny
< < h+e
Z @ b1—2€ b1—2€6 '
T,<Tn,
1 1
< Z (d1+6/2)Tn1 I (b1—€)Tn1
< 5e 7€
for large T;,, depending of ; <L We obtain a contradiction with (4.14).
Taking into account (4. 13) for some 0 < ky < [;2-] we have
Z am/ Z 6({)1726)]{)1.
k1 <Ty<ki+1

Following this procedure, we construct a sequence of integers {k; }, k11 >

k; + 2 satisfying
Z a»Y Z e(bl—QE)k‘j‘
ki <Ty<kj+1
We choose t; = k; + 1/2 and arrange
Z aﬂy Z e(b1726)tj.
t—1/2<T, <t;+1/2
Finally, we obtain (4.11) and a repetition of the argument in Case 1

implies (1.6).

Case 3. b; = 0.
For small w > 0 consider the Dirichlet series

(s+u)Ty

Tﬁe
ZIolet d_P) Z“” e,
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This series has abscissa de convergence —u < 0 and we may apply the
results of the Case 1. For a suitable sequence t; — 0o depending of —u
we obtain the estimates

efu(tjfl/Q) Z a, > Z a’yefuT-y > e(*U*QG)tj.
tj—1/2<T, <t;+1/2 tj—1/2<T, <t;+1/2
Consequently,
Z a, > efu/2672etj > e(*U/Q*ZG)t]"

t;—1/2<T <t;+1/2

These lower bounds are the estimates (4.11) with b; replaced by —u/2.
The argument in the Case 1 implies

#{p; € Resny : Rep; > (2d*+2d—1/2)(—2a)—(e+(2d*+2d—1/2)u/2)} = oo.
For small u we arrange (2d* +2d —1/2)u/2 < € and since € is arbitrary,
we obtain (1.6) with b; = 0. This completes the proof of Theorem 1.2.
|
APPENDIX
In this Appendix we prove Proposition 1.2. First,
det(Id —P,) = det(Id =D, o1, | g, (2)) det(Id =Dy 1,

= det(Dpo1, | By () det(Id =Dyt | B, () det(Dao—1 | By@) — 1d), 2 € 7.
Consequently,

Es(z))

| det(Id —P,)[ " = | det Dyopr, | g, (@) "
x| det(Id = Dypr | g, (o)) " det(Id =Dy 1 | )|~

For large T, we have

Bl £ Ce™ Doz, |puw || < Ce™, 6 > 0,VT,

HDISOTW

with constants C' > 0, 6 > 0 independent of T, since the flow ¢; is
uniformly hyperbolic (see [CP22, Appendix A]). Thus for large T, we
obtain

| det Dyor |puw) ™ < [det(Id —P,)| 7! < Ci| det Dy, =1

(A1)

Ey(z)

with 0 < ¢; < () independent of T),. We have
det Dot | Bo@) = e, reny
with
d, = log (AM...Ad_M) >0,
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Aj~ being the eigenvalues of D, pr, | £ (2) With modulus greater than 1.
The above estimate shows that the abscissa of convergence of the series

ZT’sefsTﬂ/‘i’&Y’ 5/}/ — _d,y, Res >> 1
5

coincides with b;.

Our purpose is to express b; by some dynamical characteristics re-
lated to symbolic dynamics for several disjoint strictly convex obstacles.
To do this, we recall some well known results and we refer to [[ka88b],
[[ka88al, [Ika90a], [PP90] for more details. Let A(%, j); j=1

matrix such that
. 1 ifi # 7,
Afi,j) = { ’

.....

0ifi=y.
Introduce the space
ZA = {5 = {51 (i)ifooa gz S {17 ) ...,T}, A(§i7€i+1) = ]-7 VZ € Z}

2—"A_ = {g = {52}'?207 62 € {1a 3 "'7T}7 A(S’ng-i-l) = 17 A Z 0}
Given 0 < 0 < 1, define a metric dy on X4 by dp(§,n) = 0 if £ = n and
do(&,m) = 0% if £ # n and k is the maximal integer such that & = n;
for |i| < k. Similarly, we define a metric dj on X7. Following [PP90),
Chapter 1], for a function F': ¥4 — C define

varg ' = sup{|F'(§) — F(n)| : & =mi, 1] <k}
and for G : ¥ — C define
var, G = sup{|G(§) = G(n)| : & =mi, 0 < i <k}

Let Fp(Xa), Fp(X%) be the set of Lipschitz functions with respect to
metrics dy, d , respectively, with norm

1L£1[lo = 11 flloo + [ fllos [I.fllo = sup
k>0

vary f
Ok

Let 04 be shift on ¥4 and X7 given by
(0a8)i = &iv1, Vi € Z, (048)i = &, Vi 20,

respectively. For every £ € ¥4 there exists a unique reflecting ray v(§)
with successive reflections points on ....0D;_y,0D;,0D;44, ..., where
the order of reflections is determined by the sequence (&) (see [Tka88al]).
If (P;(£))2_., are the reflexion points of (), we define the function

j=—00
f(&) = [1Fo(&) = Pr(&)]-
It was proved in [[ka88a, Section 3], [PS10, Section 3] that one can
construct a sequence of phase functions {¢¢ ;(7)}32 ., such that for

each j the phase ¢¢ ; is smooth in a neighborhood U ; of the segment



ON THE NUMBER OF POLES 23
[P5(€), Pra(€)] in R\ D and
(1) [[Vee ()l = 1 on U,
(i) Ve (Pi(€)) = Tresg e
(ili) pej = @ejv1 on 0D MU j N Ue 11,

(iv) for each x € U ; the surface C¢j(x) = {y € Ue; : v j(x) =
we ;(y)} is strictly convex with respect to its normal fiels Vg ;.

Denote by «;(£), j =1, ...,d — 1, the principal curvatures at Py(§) of
Cepo(x) and introduce

9(6) = ~log [J1 + 7€) ©).

Then
m(y(€)) d—1

st T T+ Fos)ms(0he)).

k=1 j=1

It follows form the exponential instability of the billiard ball map
(see [Ika88al, [St099]) that f(£), (&) become functions in Fyp(X,4) with
0 < 8 < 1 depending on the geometry of D. We define

Suh(§) = h(&) + h(0a€) + ... + b0 7€)
and for a periodic ray (&) we obtain
Tye) = S f(€): 036) = Smix()9(8)-

Consider the zeta function
=1
Z(s) = (Z . 3 esn<—sf<s>+g<g)>>7 Res > 1
n=1 " o%&=¢

and observe that
- _Z Z Tjj —sT +5

Next, it is well known (see for instance [PP90, Chapter 1]) that given
h € Fy(X,4), there exist functions h, y € Fyi2(X4) such that

h(€) = h(€) + x(048) — x (&)

and h(€) € Fy2(X%) depends only on the coordinates (o, &1, ...). We
denote this property by h ~ h. Choose f ~ f, g ~ g with f,g €
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Fp2(XY) and write

(Z Z Sn(=sF(©)+ 5)))

n=1 (o +)n§ 3
The pressure P(F) of a function F' € C'(X4) is defined by

P(F) = sup(h(y, o4) +/E de>,

v

where h(v,04) is the measure entropy of o4 with respect to v and the
supremum is taken over all probability measures v on X 4 invariant with
respect to o4.

Following [PP90, Chapter 6], consider the suspended flow o7 (€, 5) =
(€,s+t) on the space

Sh={(&s): £€X4, 0<5< f(€)}

with identification (&, f(€)) ~ (o4(€),0). For a function G € C(X)
define the pressure

P(G) = Slljlp{h(l/f,Ug) + /ﬁ Gdvy}, (A.2)

where h(vf,af ) is the measure entropy and the supremum is taken

over all probability measures v; on EQ invariant with respect to alf .

The suspended flow o/ is weakly mixing, if there are not ¢ € R\ {0}

with the property

() ~ M(©),

where M (§) € C(X4 : Z) has only integer values. According to [Sto99,
Lemma 5.2] and [Pet99, Lemma 1], the flow of is weakly mizing
Applying the results of [PP90, Chapter 6], we deduce that the ab-
scissa of convergence by of Z(s) is determined as the root of the equation
P(—sf 4+ §) = P(—sf + g) = 0 with respect to s. This root is unique
since s — P(—sf + g) is decreasing. Introduce the function
d—1

1 Rj 6
G(&y) = —52%. (A.3)
Clearly, o
9(&) = 2/0 G(& y)dy

Then [PP90, Proposition 6.1] says that P(—byf + g) = 0 is equivalent
to by = P(2G). With the same argument we show that a; = P(G).
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This completes the proof of Proposition 1.2. B

It easy to find a relation between P(2G) and P(g). Repeating the
argument of [PS10, Section 3], one obtains that there exist probability
measures Vg, Vg on X4 invariant with respect to o4 such that

_ Plg) < P(g)

TF©dy, =" = Te)dn

Consequently, b; has the same sign as P(g).
We close this Appendix proving that b; = by. Consider the zeta

function
(Z Z +g<£>+m))

ne=¢
related to (1.9). Introduce the complex Ruelle operator

= Z esIHIHm My (1) € Fpi2(2F).
oAn=¢
Then for s = by this operator has no eigenvalues 1 since this implies
that the operator

(Loyu)(€) = D7 el W(y)

oAn=¢§

has eigenvalue (-1). This is impossible because from P(—byf + §) = 0
one deduces that L;, has eigenvalue 1 and all other eigenvalues of L;,
have modulus strictly less than 1 (see [PP90, Theorem 2.2]).This shows
that the function Z;(s) is analytic for s = by, hence (1.9) has the same
property. Finally, similarly to (1.3), we write the function (1.9) as a
difference of two Dirichlet series with abscissas of convergence b; and
by. Therefore the inequality by < by leads to contradiction.
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