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Abstract. We study the number of the poles of the meromorphic
continuation of the dynamical zeta functions ηN and ηD for several
strictly convex disjoint obstacles satisfying non-eclipse condition.
For ηN we obtain a strip {z ∈ C : Re s > β} with infinite number
of poles. For ηD we prove the same result assuming the boundary
real analytic. Moreover, for ηN we obtain a characterisation of β

by the pressure P (2G) of some function G on the space Σf
A related

to the dynamical characteristics of the obstacle.

1. Introduction

Let D1, . . . , Dr ⊂ Rd, r > 3, d > 2, be compact strictly convex dis-
joint obstacles with C∞ smooth boundary and let D =

⋃r
j=1Dj. We

assume that every Dj has non-empty interior and throughout this pa-
per we suppose the following non-eclipse condition

Dk ∩ convex hull (Di ∪Dj) = ∅, (1.1)

for any 1 6 i, j, k 6 r such that i 6= k and j 6= k. Under this condition
all periodic trajectories for the billiard flow in Ω = Rd \ D̊ are ordinary
reflecting ones without tangential intersections to the boundary of D.
We consider the (non-grazing) billiard flow ϕt (see Section 2 for the
definition). Next the periodic trajectories will be called periodic rays.
For any periodic ray γ, denote by τ(γ) > 0 its period, by τ ](γ) > 0
its primitive period, and by m(γ) the number of reflections of γ at
the obstacles. Denote by Pγ the associated linearized Poincaré map
(see section 2.3 in [PS17] and Section 2 for the definition). Let P be
the set of all oriented periodic rays. Notice that some periodic rays
have only one orientation, while others admits two (see [CP22, §2.3]
for more details). Let Π be the set of all primitive periodic rays. Then
the counting function of the lengths of periodic rays satisfies

]{γ ∈ Π : τ ](γ) 6 x} ∼ ehx

hx
, x→ +∞, (1.2)

for some h > 0 (see for instance, [PP90, Theorem 6.5] for weakly mixing
suspension symbolic flow and [Ika90a], [Mor91]). Hence there exists an
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infinite number of primitive periodic trajectories and applying (1.2),
for every sufficiently small ε > 0 one obtains the estimate

e(h−ε)x ≤ ]{γ ∈ P : τ(γ) 6 x} 6 e(h+ε)x, x ≥ Cε � 1.

Moreover, for some positive constants c1, C1, f1, f2 we have (see for
instance [Pet99, Appendix] and (A.1))

c1ef1τ(γ) 6 | det(Id− Pγ)| 6 C1ef2τ(γ), γ ∈ P .
By using these estimates, define for Re(s)� 1 two Dirichlet series

ηN(s) =
∑
γ∈P

τ ](γ)e−sτ(γ)

| det(Id− Pγ)|1/2
, ηD(s) =

∑
γ∈P

(−1)m(γ) τ ](γ)e−sτ(γ)

| det(Id− Pγ)|1/2
,

where the sums run over all oriented periodic rays. The length τ ](γ),
the period τ(γ) and | det(Id−Pγ)|1/2 are independent of the orientation
of γ. We consider also for q ≥ 1, q ∈ N, the zeta function

ηq(s) = q
∑

γ∈P,m(γ)∈qN

τ ](γ)e−sτ(γ)

| det(Id− Pγ)|1/2
,Re s� 1.

Clearly, ηN(s) = η1(s). These zeta functions are important for the
analysis of the distribution of the scattering resonances related to the
Laplacian in Rd \ D̄ with Dirichlet and Neumann boundary conditions
on ∂D (see [CP22, §1] for more details).

It was proved in [CP22, Theorem 1.1 and Theorem 4.1] that ηq ad-
mit a meromorphic continuation to C with simple poles and integer
residues. We have the equality

ηD(s) = η2(s)− η1(s), Re s� 1, (1.3)

hence ηD admits also a meromorphic continuation to C with simple
poles and integer residues. The functions ηq(s) are Dirichlet series
with positive coefficients and by a classical theorem of Landau (see for
instance, [Ber33, Théorème 1, Chapitre IV]) they have a pole s = aq,
where aq is the abscissa of convergence of ηq(s). On the other hand,
from (1.3) it follows that some cancelations of poles are possible. In
this direction, for d = 2 [Sto01] and for d > 3 under some conditions
[Sto12] Stoyanov proved that there exists ε > 0 such that ηD(s) is
analytic for Re s > a1 − ε. The same result has been proved for d = 3
and a1 > 0 by Ikawa [Ika00].

The purpose of this paper is to prove that ηq(s) has an infinite num-
ber of poles and to estimate β ∈ R such that the number of poles
with Re s > β is infinite. The same questions are more difficult for
ηD(s) since the existence of at least one pole has been established only
for obstacles with real analytic boundary [CP22, Theorem 1.3] and for
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obstacles with sufficiently small diameters [Ika90b], [Sto09]. Clearly,
aq ≤ a1. We have a2 = a1, since if a2 < a1, the function ηD will
have a singularity at a1 which is impossible because ηD is analytic for
Re s ≥ a1 (see [Pet99, Theorem 1]).

Denote by Res ηq, Res ηD the set of poles of ηq and ηD, respectively.
For Res ηq we prove the following

Theorem 1.1. For every 0 < δ < 1 there exists αδ,q < aq such that for
α < αδ,q we have

]{µj ∈ Res ηq : Reµj ≥ α, |µj| 6 r} 6= O(rδ). (1.4)

If the boundary ∂D is real analytic, the same result holds for Res ηD.

More precisely, we show that for any 0 < δ < 1 there exists αδ,q < 0
depending on the dynamical characteristics of D such that if α < αδ,q,
for any constant 0 < C <∞ the estimate

]{µj ∈ Res ηq : Reµj ≥ α, |µj| 6 r} 6 Crδ, r > 1

does not hold. Similar results have been proved for Pollicott-Ruelle res-
onances for Anosov flows [JZ17, Theorem 2], for Axiom A flows [JT23,
Theorem 4.1] and for Neumann and Dirichlet scattering resonances for
obstacles D satisfying (1.1) in [Pet02] and [CP22, Theorem 1.3], re-
spectively. According to Theorem 1.1, it follows that for large A > 0 in
the region DA = {z ∈ C : Re z > −A} there are infinite number poles
µ ∈ Resη1∩DA and infinite number poles ν ∈ Resη2∩DA. Therefore if
ηD is analytic in DA, by (1.3) we deduce that we must have an infinite
number of cancellations of poles µ with poles ν and the corresponding
residues of the cancelled poles µ and ν must coincide. For obstacles
with real analytic boundary Theorem 1.1 shows that this is impossible.

Remark 1.1. The proof of Theorem 1.1 works if the function ηD is
not entire. As we mentioned above, this holds for obstacles with real
analytic boundary.

It is interesting to find the maximal number βq < aq such that the
strip {z ∈ C : Re z > βq} contains infinite number poles of ηq and to
obtain so called essential spectral gap. This is a difficult open problem.
Let bq < aq be the abscissa of convergence of the series∑

γ,m(γ)∈qN

τ ](γ)e−sτ(γ)

| det(Id− Pγ)|
, Re s� 1 (1.5)

and let α = max{0, a1}. In our second result we obtain a more precise
result for Res η1.
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Theorem 1.2. For any small ε > 0 we have

]{µj ∈ Res η1 : Reµj > (2d2 + 2d− 1/2)(b1 − 2α)− ε} =∞. (1.6)

Notice that

2d2 + 2d− 1/2 = 2(d2 + d− 1) + 3/2 = 2 dimG+ 3/2,

where G is the (d−1)-Grassmannian bundle introduced in Section 2. In
Appendix we prove that b1 coincides with the abscissa of convergence
of the series ∑

γ

τ ](γ)e−sτ(γ)

| det(Dxϕτ(γ)|Eu(x))|
, Re s� 1, (1.7)

where Eu(x) is the unstable space of x ∈ γ (see (2.1) for the nota-
tion). By using symbolic dynamics, we define (see (A.3)) a function

G(ξ, y) < 0 on the space Σf
A related to dynamical characteristics of D

(see Appendix) and prove the following

Proposition 1.2. The abscissas of convergence a1 and b1 are given by

a1 = P (G), b1 = P (2G), (1.8)

P (G) being the pressure of G defined by (A.2).

For a1 ≤ 0 we have α = 0 and Theorem 1.2 is similar to [JZ17, Theo-
rem 3] established for weakly mixing Anosov flows ψt, where instead of
b1 = P (2G) one has the pressure P (2ψu) < 0 of the Sinai-Ruelle-Bowen
potential

ψu(x) = − d

dt

(
log | detDxψt|Eu(x)|

)
|t=0.

Notice that for Anosov flow one has P (ψu) = 0, (see [BR75, Theorem
5]), while a1 = P (G) can be different from 0. More precise results for
the poles of the semi-classical zeta function for contact Anosov flows
have been obtained in [FT13], [FT17, Theorem 1.2].

Remark 1.3. The constant 2d2 + 2d − 1/2 in (1.6) is related to the

estimate (3.3) of Fourier transform F̂A,1 in the local trace formula for
η1(s) (see Theorem 3.2) and probably it is not optimal. A better esti-

mate of F̂A,1 can be obtained if the bound of the number of poles (3.1)
is improved (see for example, [AFW17], where the Hausdorff dimension
of the trapped set K is involved).

We have b1 = b2 since the series∑
γ

(−1)m(γ)τ ](γ)e−sτ(γ)

| det(Id−Pγ)|
, Re s� 1 (1.9)
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is analytic for Re s ≥ b1. We discuss this question at the end of Appen-
dix. Theorem 1.2 can be generalized for Res η2 and one obtains (1.6).
The proof works with some modifications.

The paper is organised as follows. In Section 2 we collect some defini-
tions and notations from [CP22] which are necessary for the exposition.
In particular, we define the non-grazing billiard flow ϕt, the (d − 1)-
Grassmannian bundle G, the bundles Ek,` over G and the operators
Pk,`, 0 ≤ k ≤ d, 0 ≤ ` ≤ d2. In Section 3 we obtain local trace formu-
las combining the results in [JT23, §6.1] and [CP22, Lemma 3.1]. In
Section 4 we prove Theorems 1.1 and 1.2. Finally in Appendix we use
symbolic dynamics and establish Proposition 1.2.

Acknowledgements. We would like to thank Long Jin, Frédéric Naud
and Zhongkai Tao for the useful and stimulating discussions.

2. Preliminaries

We recall the definition of billiard flow φt described in [CP22, §2.1].
Denote by SRd the unit tangent bundle of Rd and by π : SRd → Rd

the natural projection. For x ∈ ∂Dj, denote by nj(x) the inward unit
normal vector to ∂Dj at the point x pointing into Dj. Set

D = {(x, v) ∈ SRd : x ∈ ∂D}.

We say that (x, v) ∈ T∂Dj(Rd) is incoming (resp. outgoing) if we have
〈v, nj(x)〉 > 0 (resp. 〈v, nj(x)〉 < 0). Introduce

Din = {(x, v) ∈ D : (x, v) is incoming},
Dout = {(x, v) ∈ D : (x, v) is outgoing}.

Define the grazing set Dg = T (∂D) ∩ D and obtain

D = Dg t Din t Dout.

The billiard flow (φt)t∈R is the complete flow acting on SRd \ π−1(D̊)

which is defined as follows. For (x, v) ∈ SRd \ π−1(D̊) set

τ±(x, v) = ± inf{t > 0 : x± tv ∈ ∂D}.

For (x, v) ∈ Din/out denote by v′ ∈ Dout/in the image of v by the reflexion
with respect to Tx(∂D) at x ∈ ∂Dj, given by

v′ = v − 2〈v, nj(x)〉nj(x), v ∈ Sx(Rd), x ∈ ∂Dj.

Then for (x, v) ∈ (SRd \ π−1(D)) ∪ Dg define

φt(x, v) = (x+ tv, v), t ∈ [τ−(x, v), τ+(x, v)],
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while for (x, v) ∈ Din/out, we set

φt(x, v) = (x+ tv, v) if

{
(x, v) ∈ Dout, t ∈ [0, τ+(x, v)] ,

or (x, v) ∈ Din, t ∈ [τ−(x, v), 0] ,

and

φt(x, v) = (x+ tv′, v′) if

{
(x, v) ∈ Din, t ∈ ]0, τ+(x, v)] ,

or (x, v) ∈ Dout, t ∈ [τ−(x, v′), 0[ .

We extend φt to a complete flow still denoted by φt having the property

φt+s(x, v) = φt(φs(x, v)), t, s ∈ R, (x, v) ∈ SRd \ π−1(D̊).

Next we introduce the non-grazing set M as

M = B/ ∼, B = SRd \
(
π−1(D̊) ∪ Dg

)
,

where (x, v) ∼ (y, w) if and only if (x, v) = (y, w) or

x = y ∈ ∂D and w = v′.

The set M is endowed with the quotient topology. We change the
notation and pass from φt to the non-grazing flow ϕt, which is defined
on M as follows. For (x, v) ∈ (SRd \ π−1(D)) ∪ Din define

ϕt([(x, v)]) = [φt(x, v)], t ∈ ]τ g
−(x, v), τ g

+(x, v)[ ,

where [z] denotes the equivalence class of z ∈ B for the relation ∼, and

τ g
±(x, v) = ± inf{t > 0 : φ±t(x, v) ∈ Dg}.

Thus ϕt is continuous, but the flow trajectory of (x, v) for times t /∈
]τ g
−(x, v), τ g

+(x, v)[ is not defined. Clearly, we may have τ g
±(x, v) = ±∞,

while τ g
±(x, v) 6= 0 for (x, v) ∈ Din. Note that the above formula indeed

defines a flow on M because each (x, v) ∈ B has a unique representative

in (SRd \ π−1(D̊)) ∪ Din.Following [DSW24, Section 3], we may define
smooth charts on M = B/ ∼ and ϕt becomes C∞ non complete flow
with respect to new charts.

Throughout we work with the smooth flow ϕt and denote by X its
the generator. Let A(z) = {t ∈ R : π(ϕt(z)) ∈ ∂D}. The trapped set
K of ϕt is the set of points z ∈M which satisfy −τ g

−(z) = τ g
+(z) = +∞

and

supA(z) = − inf A(z) = +∞.
By definition, ϕt(z) is defined for all t ∈ R whenever z ∈ K. The flow
ϕt is called uniformly hyperbolic on K, if for each z ∈ K there exists a
decomposition

TzM = RX(z)⊕ Eu(z)⊕ Es(z), (2.1)
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which is dϕt-invariant with dimEs(z) = dimEu(z) = d− 1, such that
for some constants C > 0, ν > 0, independent of z ∈ K, and some
smooth norm ‖ · ‖ on TM , we have

‖dϕt(z) · v‖ 6

{
Ce−νt‖v‖, v ∈ Es(z), t > 0,

Ce−ν|t|‖v‖, v ∈ Eu(z), t 6 0.
(2.2)

The spaces Es(z) and Eu(z) depend continuously on z (see [Has02,
Section 2]).

The flow ϕt is uniformly hyperbolic on K (for the proof see [CP22,
Appendix A]). Take a small neighborhood V of K in M , with smooth
boundary and embed V into a compact manifold without boundary N .
We extend arbitrarily X to obtain a smooth vector field on N , still
denoted by X. The associated flow is still denoted by ϕt. Note that
the new flow ϕt is now complete. Introducing the surjective map

πM : B 3 (x, ξ)→ [(x, ξ)] ∈M,

we have ϕt◦πM = πM◦φt and there is a bijection between periodic orbits
of φt and ϕt presevering the periods of the closed trajectories of φt,
while the corresponding Poincaré maps are conjugated (see [DSW24,
Section 3]).

Consider the (d− 1)-Grassmannian bundle

πG : G→ N

over N . More precisely, for every z ∈ N , the set π−1
G (z) consists of all

(d−1)-dimensional planes of TzN . The dimension of π−1
G (z) is d(d−1)

and G is a smooth compact manifold with dimG = d2 + d− 1 . We lift
ϕt to a flow ϕ̃t : G→ G defined by

ϕ̃t(z, E) = (ϕt(z), dϕt(z)(E)), z ∈ N, E ⊂ TzN, dϕt(z)(E) ⊂ Tϕt(z)N.

Introduce the set

K̃u = {(z, Eu(z)) : z ∈ K} ⊂ G.

Clearly, K̃u is invariant under the action of ϕ̃t, since dϕt(z)(Eu(z)) =

Eu(ϕt(z)). The set K̃u will be seen as the trapped set of the restriction

of ϕ̃t to a neighborhood of K̃u and the flow ϕ̃t is uniformly hyperbolic

on K̃(see [BR75, Lemma A.3], [CP22, §2.5]). Let X̃ be the generator

of ϕ̃t and let Ṽu be a small neighborhood of K̃u in G with smooth

boundary ∂Ṽu (see[CP22, §2.7]). Define

Γ±(X̃) = {z ∈ Ṽu : ϕ̃t(z) ∈ Ṽu, ∓t > 0}.

Denote by clos Ṽu the closure of Ṽu. Let ρ̃ ∈ C∞(clos Ṽu, R̄+) be the

defining function for Ṽu such that ∂Ṽu = {z ∈ clos Ṽu : ρ̃(z) = 0} and
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dρ̃(z) 6= 0 for any z ∈ ∂Ṽu. Following [GMT21, Lemma 2.3], for any

small neighborhood W̃0 of ∂Ṽu there exists a vector field Ỹ on clos Ṽu
arbitrary close to X̃ in C∞-topology and flow ψ̃t generated by Ỹ with
the properties:

(1) supp (Ỹ − X̃) ⊂ W̃0.

(2) (Convexity condition) For any defining function ρ of Ṽu and any

ω ∈ ∂Ṽu we have

Ỹ ρ(ω) = 0 =⇒ Ỹ 2ρ(ω) < 0.

(3) Γ±(X̃) = Γ±(Ỹ ), where Γ±(Ỹ ) is defined as above by ψ̃t.

By [DG16, Lemma 1.1], we may find a smooth extension of Ỹ on G

(still denoted by Ỹ ) so that for every ω ∈ G and T > 0, we have

ω, ψ̃T (ω) ∈ clos Ṽu =⇒ ψ̃t(ω) ∈ clos Ṽu, ∀t ∈ [0, T ]. (2.3)

In the following we fix Ṽu, W̃0, Ỹ and the flow ψ̃t with the properties
mentioned above. Thus we obtain an open hyperbolic system satisfying
the conditions (A1)− (A4) in [DG16, §0] (see also [JT23, §2.1]).

Next repeating the setup in [CP22, §2.6], we introduce some bun-
dles passing to open hyperbolic system for bundles. First, define the
tautological vector bundle E → G by

E = {(ω, u) ∈ π∗G(TN) : ω ∈ G, u ∈ [ω]},

where [ω] = E denotes the (d − 1) dimensional subspace of TπG(ω)N
represented by ω = (z, E) and π∗G(TN) is the pullback bundle of TN.
Second, introduce the ”vertical bundle” F → G by

F = {(ω,W ) ∈ TG : dπG(ω) ·W = 0},

which is a subbundle of the bundle TG → G. The dimensions of the
fibres Eω and Fω of E and F over ω are given by

dim Eω = d− 1, dimFω = dim ker dπG(ω) = d2 − d

for any ω ∈ G with πG(ω) = z. Finally, set

Ek,` = ∧kE∗ ⊗ ∧`F , 0 6 k 6 d− 1, 0 6 ` 6 d2 − d,

where E∗ is the dual bundle of E , that is, we replace the fibre Eω by its
dual space E∗ω.
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Next we use the notation ω = (z, η) ∈ G and u ⊗ v ∈ Ek,`|ω. By

using the flow ψ̃t, introduce a flow Φk,`
t : Ek,` → Ek,` by

Φk,`
t (ω, u⊗v) =

(
ψ̃t(ω), bt(ω)·

[(
dϕt(πG(ω))−>

)∧k
(u)⊗ dψ̃t(ω)∧`(v)

])
,

(2.4)
with

bt(ω) = | det dϕt(πG(ω))|[ω]|1/2 · | det
(

dψ̃t(ω)|ker dπG

)
|−1,

where −> denotes the inverse transpose. Consider the transfer operator

Φk,`,∗
−t : C∞(G, Ek,`)→ C∞(G, Ek,`)

defined by

Φk,`,∗
−t u(ω) = Φk,`

t

[
u(ψ̃−t(ω))

]
, u ∈ C∞(G, Ek,`) (2.5)

and let Pk,` : C∞(G, Ek,`) → C∞(G, Ek,`) be the generator of Φk,`,∗
−t

defined by

Pk,`u =
d

dt

(
Φk,`,∗
−t u

)∣∣∣∣
t=0

, u ∈ C∞(G, Ek,`).

We obtain

Pk,`(fu) = (Pk,`f)u + f(Pk,`u), f ∈ C∞(G), u ∈ C∞(G, Ek,`).

Notice that we obtain the same setup as in Definition 6.1 in [JT23,
§6.1]. In the last paper the authors deal with a general Axiom A flow
with several basic sets. In our case we have only one basic set and
we may apply the results of [DG16] and [JT23]. With some constant
C > 0 we have

‖e−tPk,`‖L2(G,Ek,`)→L2(G,Ek,`) ≤ CeCt, t ≥ 0

and

(Pk,` + s)−1 =

∫ ∞
0

e−t(Pk,`+s)dt : L2(G, Ek,`)→ L2(G, Ek,`), Re s� 1.

Introduce the operator

Rk,`(s) = 1Ṽu(Pk,`+s)
−11Ṽu : C∞c (Ṽu, Ek,`)→ D′(Ṽu, Ek,`), Re(s)� 1,

where D′(Ṽu, Ek,`) denotes the space of Ek,`-valued distributions. Apply-
ing [DG16, Theorem 1], we obtain a meromorphic extension of Rk,`(s)
to the whole plane C with simple poles and positive integer residues.

For ω ∈ G and t > 0 consider the parallel transport map

αk,`ω,t = α1,ω,t ⊗ α2,ω,t : ΛkE∗ω ⊗ Λ`Fω −→ ΛkE∗
ψ̃t(ω)

⊗ Λ`Fψ̃t(ω)
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given by

u⊗ v 7−→ (e−tPk,`(u⊗ v))(ψ̃(t)),

where u,v are some sections of E∗ω and Fω over ω, respectively. The
definition does not depend on the choice of u and v (see [DG16, Eq.
(0.8)]). For a periodic trajectory γ̃ : t → γ̃(t) = (γ(t), Eu(γ(t)) with
period T we define

tr(αk,`γ̃ ) = trαk,`γ̃(t),T

(see [DG16], [CP22]) and the trace is independent of the choice of the
point γ̃(t) ∈ γ̃.

Finally, if χ̃ ∈ C∞c (Ṽu) is equal to 1 near the trapping set K̃u we have
the Guillemin trace formula (see [DG16, (4.6)], [SWB23, §3.1],[CP22,
§3.2]) with the flat trace

tr[(χ̃e−tPk,`χ̃) =
∑
γ̃

τ ](γ) tr(αk,`γ̃ )δ(t− τ(γ))

| det(Id−P̃γ)|
, t > 0. (2.6)

Here both sides are distributions on (0,∞) and the sum runs over all
periodic orbits γ̃ of ϕ̃t,

P̃γ = dϕ̃−τ(γ)(ωγ̃)
∣∣
Ẽu(ωγ̃)⊕Ẽs(ωγ̃)

is the linearized Poincaré map of the periodic orbit γ̃(t) of the flow ϕ̃t
and ωγ̃ ∈ Im(γ̃) is any reference point taken in the image of γ̃.

To treat the zeta function related only to periodic rays with number
of reflections m(γ) ∈ qN, q ≥ 2, we consider the setup introduced in
[CP22, §4.1] and we recall it below. For q > 2 define the q-reflection
bundle Rq →M by

Rq =
([
SRd \

(
π−1(D̊) ∪ Dg

)]
× Rq

)/
≈, (2.7)

where the equivalence classes of the relation ≈ are defined as follows.

For (x, v) ∈ SRd \
(
π−1(D̊) ∪ Dg

)
and ξ ∈ Rq, we set

[(x, v, ξ)] = {(x, v, ξ), (x, v′, A(q) · ξ)} if (x, v) ∈ Din, (x, v′) ∈ Dout,

where A(q) is the q × q matrix with entries in {0, 1} given by

A(q) =


0 1
1 0

. . . . . .
1 0

 .

Clearly, the matrix A(q) yields a shift permutation

A(q)(ξ1, ξ2, ..., ξq) = (ξq, ξ1, ..., ξq−1).
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This indeed defines an equivalence relation since (x, v′) ∈ Dout when-
ever (x, v) ∈ Din. Note that

A(q)q = Id, trA(q)j = 0, j = 1, . . . , q − 1. (2.8)

Define a smooth structure of Rq as in [CP22, §4.1] and introduce the
bundle

Eqk,` = Ek,` ⊗ π∗GRq,

where π∗GRq is the pullback of Rq by πG so π∗GRq → G is a vector
bundle over G. Consider a small smooth neighborhood V of K. We
embed V into a smooth compact manifold without boundary N , and
we fix an extension of Rq to N . Consider any connection ∇q on the
extension of Rq which coincides with dq near K, and denote by

Pq,t(z) : Rq(z)→ Rq(ϕt(z))

the parallel transport of ∇q along the curve {ϕτ (z) : 0 6 τ 6 t}. We
have a smooth action of ϕqt on Rq which is given by the horizontal lift
of ϕt

ϕqt (z, ξ) = (ϕt(z), Pq,t(z) · ξ), (z, ξ) ∈ Rq.

We may lift the flow ϕt to a flow Φk,`,q
t on Eqk,` which is defined locally

near K̃u by

Φk,`,q
t (ω, u⊗ v ⊗ ξ)

=
(
ϕ̃t(ω), bt(ω) ·

[(
dϕt(πG(ω))−>

)∧k
(u)⊗ (dϕ̃t(ω))∧`(v)⊗ Pq,t(z) · ξ

])
for any ω = (z, E) ∈ G, u⊗v⊗ξ ∈ Eqk,`(ω) and t ∈ R. Following [CP22,
§4.1], we deduce that for any periodic orbit γ = (ϕτ (z))τ∈[0,τ(γ)], the
trace

tr(Pq,γ) = tr(Pq,ϕ(z)) =

{
q if m(γ) = 0 mod q,

0 if m(γ) 6= 0 mod q
(2.9)

is independent of z. Define the transfer operator

Φk,`,q,∗
−t : C∞(G, Eqk,`)→ C∞(G, Eqk,`)

by
Φk,`,q,∗
−t u(ω) = Φk,`,q

t [u(ϕ̃−t(ω)], u ∈ C∞(G, Eqk,`)
and denote by Pk,`,q be the generator of Φk,`,q,∗. As above, we obtain
the flat trace

tr[(χ̃e−tPk,`,q χ̃) = q
∑

γ̃,m(πG(γ̃))∈qN

τ ](γ) tr(αk,`γ̃ )δ(t− τ(γ))

| det(Id−P̃γ)|
, t > 0.

(2.10)
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We close this section by the following

Lemma 2.1 (Lemma 3.1, [CP22]). For any periodic orbit γ̃ of the flow
ϕ̃t related to a periodic orbit γ, we have

1

| det(Id−P̃γ)|

d−1∑
k=0

d2−d∑
`=0

(−1)k+` tr(αk,`γ̃ ) = | det(Id−Pγ)|−1/2.

3. Local trace formula

In this section we apply the results of [DG16] and [JT23, §6.1] for vec-
tor bundles. For simplicity we will use the notations Ek,` = E1

k,`, Pk,` =

Pk,`,1, etc. For χ̃ ∈ C∞c (Ṽu) such that χ̃ ≡ 1 near K̃u, by [DG16] and
[JT23, §6.1] we conclude that for any integer q ∈ N

χ̃(−iPk,`,q + s)−1χ̃

has a meromorphic continuation to C. Denote by Res(−iPk,`,q) the set
of the poles of this continuation. Then for any constant β > 0 it was
proved in [JT23, (6.3)] that we have the upper bound

]Res (−iPk,`,q) ∩ {λ ∈ C, |Reλ− E| ≤ 1, Imλ ≥ −β} = O(Ed2+d−1).
(3.1)

In particular, there exists C > 0 depending of β such that

]Res (−iPk,`,q) ∩ {λ ∈ C, |λ| ≤ E, Imλ ≥ −β} ≤ CEd2+d + C.

Notice that the power d2+d−1 comes from dimG. Next for Res(−iPk,`,q)
we obtain as in [JT23] the following local trace formula.

Theorem 3.1 (Theorem 1.5 and (6.5), [JT23]). For every A > 0 and

any q ∈ N there exists a distribution F k,`,q
A ∈ S ′(R) supported in (0,∞)

such that ∑
µ∈Res (−iPk,`,q),Imµ>−A

e−iµt + F k,`,q
A (t)

= q
∑

γ̃, m(γ)∈qN

τ ](γ) tr(αk,`γ̃ )δ(t− τ(γ))

| det(Id−P̃γ)|
, t > 0. (3.2k,`,q)

Moreover for any ε > 0 the Fourier-Laplace transform F̂ k,`,q
A (λ) of

F k,`,q
A (t) is holomorphic for Imλ < A− ε and we have the estimate

|F̂ k,`,q
A (λ)| = OA,ε,k,`,q(1 + |λ|)2d2+2d−1+ε, Imλ < A− ε. (3.3)

Here γ = πG(γ̃).
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As it was mentioned in [JT23, Section 6], the proof in [JT23, Sec-
tion 4] with minor modifications works in the case of vector bundles.
Combining the above result with Lemma 2.1, we obtain

Theorem 3.2. For every A > 0 and any ε > 0 there exists a distribu-
tion FA,q ∈ S ′(R) supported in (0,∞) with Fourier-Laplace transform

F̂A,q(λ) holomorphric for Imλ < A− ε such that

d∑
k=0

d2−d∑
`=0

∑
µ∈Res (−iPk,`,q),Imµ>−A

(−1)k+`e−iµt + FA,q(t)

= q
∑

γ, m(γ)∈qN

τ ](γ)δ(t− τ(γ))

| det(Id−Pγ)|1/2
, t > 0, (3.4q)

where F̂A,q(λ) =
∑d

k=0

∑d2−d
`=0 (−1)k+`F̂ k,`,q

A (λ) satisfies the estimate
(3.3).

Choosing q = 1, we obtain a local trace formula for Neumann dy-
namical zeta function ηN(s), introduced in Section 1. For the Dirichlet
dynamical zeta function ηD(s) given in Section 1 we use the represen-
tation (1.3) and applying (3.4)q with q = 1, 2, we obtain the local trace
formula

d∑
k=0

d2−d∑
`=0

∑
µ∈Res (−iPk,`,2),Imµ>−A

(−1)k+`e−iµt

−
d∑

k=0

d2−d∑
`=0

∑
µ∈Res (−iPk,`,1),Imµ>−A

(−1)k+`e−iµt + FA,2(t)− FA,1(t)

=
∑
γ

(−1)m(γ)τ ](γ)δ(t− τ(γ))

| det(Id−Pγ)|1/2
, t > 0. (3.5)

Some resonances µ ∈ Res (−iPk,`,q), k + ` odd, q = 1, 2 may can-
cel with some resonances ν ∈ Res (−iPk,`,q), k + ` even, q = 1, 2 and
appriori it is not clear if the meromorphic continuation of dynamical
zeta functions ηN(s) and ηD(s) have infinite number poles. Notice that
all poles are simples and the cancellations in (3.4)q could appear for
terms with coefficients + and − related to k + ` even and k + ` odd,
respectively. On the other hand, in (3.5) we have more possibilities for
cancellations of poles.
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4. Strip with infinite number poles

Proof of Theorem 1.1. We will prove Theorem 1.1 for ηD since the
argument for ηq is completely similar and simpler. After cancelation
all poles µ at the left hand side of (3.5) satisfy Imµ ≤ α = max{0, a1}.
To avoid confusion, in the following we denote by µ̃ the poles µ in
(3.5) which are not cancelled. Assume that for some 0 < δ < 1 and
0 ≤ k ≤ q, 0 ≤ ` ≤ q2 − q, q = 1, 2 we have estimates

NA,k,`,q(r) = ]{µ̃ ∈ Res (−iPk,`,q) : |µ̃| ≤ r, −A < Im µ̃ ≤ α}
≤ P (A, k, `, q, δ)rδ. (4.1)

We follow the argument in [JZ17, Section 5] and [CP22, Appendix B]
with some modifications. Let ρ ∈ C∞0 (R;R+) be an even function with
supp ρ ⊂ [−1, 1] such that

ρ(t) > 1 if |t| 6 1/2,

and

ρ̂(−λ) =

∫
eitλρ(t)dt > 0, k ∈ R.

Let (`j)j∈N and (mj)j∈N be sequences of positive numbers such that
`j > d0 = mink 6=m dist (Dk, Dm) > 0, mj > max{1, 1

d0
} and let `j →

∞, mj →∞ as j →∞. Set

ρj(t) = ρ(mj(t− `j)), t ∈ R,
and introduce the distribution FD ∈ S ′(R+) by

FD(t) =
∑
γ∈P

(−1)m(γ)τ ](γ)δ(t− τ(γ))

| det(I − Pγ)|1/2
. (4.2)

We have the following proposition established by Ikawa.

Proposition 4.1 (Prop. 2.3, [Ika90a]). Suppose that the function s 7→
ηD(s) cannot be prolonged as an entire function of s. Then there exists
α0 > 0 such that for any β > α0 we can find sequences (`j), (mj) with
`j →∞ as j →∞ such that for all j > 0 one has

eβ`j 6 mj 6 e2β`j and |〈FD, ρj〉| > e−α0`j .

We apply the local trace formula (3.5) to function ρj(t). For −A ≤
Im ζ ≤ α we have

|ρ̂j(ζ)| = m−1
j |ρ̂(m−1

j ζ)e−i`jζ | ≤ CNm
−1
j eα`j+m

−1
j max(α,A)(1+ |m−1

j ζ|)−N .
Then for q = 1, 2 and −A ≤ Im µ̃ ≤ α we obtain∣∣ ∑

Im µ̃>−A, µ̃∈Res (−iPk,`,q)

〈e−iµ̃t, ρj(t)〉
∣∣
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6 CN,Am
−1
j eα`j

∫ ∞
0

(1 +m−1
j r)−NdNA,k,`,q(r)

= −CN,Am−1
j eα`j

∫ ∞
0

d

dr

(
(1 +m−1

j r)−N
)
NA,k,l,q(r)dr

6 BN,AP (A, k, `, q, δ)m
−(1−δ)
j eα`j

∫ ∞
0

(1 + y)−N−1yδdy

= ANP (A, k, `, q, δ)m
−(1−δ)
j eα`j ≤ DA,k,`,q,δe

(−β(1−δ)+α)`j .

Next, applying (3.3), we have

〈FA,q, ρj〉 =

∫
R
F̂A,q(−ζ)ρ̂j(ζ)dζ =

∫
R+i(ε−A)

F̂A,q(−ζ)ρ̂j(ζ)dζ

and choosing M = 2d2 + 2d+ 1, we deduce

|〈FA,q, ρj〉| ≤ CM,A,qm
−1
j e(ε−A)`jem

−1
j max{A−ε,α}

×
∫

(1 + |ζ|)2d2+2d−1+ε(1 + |m−1
j ζ|)−Mdζ

≤ DM,A,qe
(ε−A)`jm2d2+2d−1+ε

j ≤ DM,A,qe
(ε−A)`je2(2d2+2d−1+ε)β`j .

According to [CP22, Theorem 1.3] for obstacles with real analytic
boundary, the function ηD is not entire and we may apply Propo-
sition 4.1. Taking together the above estimates and summing for
0 ≤ k ≤ d, 0 ≤ ` ≤ d2 − d and q = 1, 2, we get

DAe
(−β(1−δ)+α)`j + EAe

(ε−A)`je2(2d2+2d−1+ε)β`j ≥ e−α0`j .

Here the constants DA and EA depend of A but they are independent
of `j. We choose β > α0+α

1−δ . We fix β and 0 < ε < 1 and choose

A > 2(2d2 + 2d− 1 + ε)β + ε+ α0.

Fixing A, for `j → ∞ we obtain a contradiction. This completes the
proof of Theorem 1.1 for ηD.

To deal with Res ηq, q ≥ 2, we choose a periodic ray γ0 with q
reflections, `j = jτ ](γ0), mj = eβ`j and apply the lower bound∣∣〈 ∑

γ, m(γ)∈qN

τ ](γ)δ(t− τ(γ))

| det(Id−Pγ)|1/2
, ρj〉

∣∣ ≥ ce−c0`j , ∀j ≥ 0

with c > 0, c0 > 0 independent of `j. For q = 1 we choose `j =
jτ ](γ), mj = eβ`j with some periodic ray γ and obtain the above esti-
mate. Repeating the argument for ηD, we prove (1.4). �
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Proof of Theorem 1.2. We follow the approach of F. Naud in [JZ17,
Appendix A]. Let 0 ≤ ρ ∈ C∞0 (−1, 1) be the function introduced above.
For ξ ∈ R and t > max{d0, 1} introduce the function

ψt,ξ(s) = eiξtρ(s− t), ξ ∈ R.

We apply the trace formula (3.4)1 to ψt,ξ. As above denote by µ̃ the
poles which are not cancelled in the left hand side of (3.4)1. Assume
that for 0 ≤ k ≤ d and 0 ≤ ` ≤ d2 − d we have

]{µ̃ ∈ Res (−iPk,l) : −A− ε ≤ Im µ̃ ≤ α} = P (A, k, `, ε) <∞. (4.3)

First, we have

|ψ̂t,ξ(ζ)| ≤ CNe
t Im ζ+| Im ζ|(1 + |Re ζ − ξ|)−N .

For −A ≤ Im µ̃ ≤ α and N = 1 the sum of terms involving poles µ̃
in (3.4)1 can be bounded by C1eαt

1+|ξ| with constant C1 > 0 depending of

P (A, k, `, ε) and exp(max{A,α}). Second, by using (3.3) for F̂A,1, one
deduces

|〈FA,1, ψt,ξ〉| ≤ C2e
(ε−A)(t−1)(1 + |ξ|)2d2+2d−1+ε.

Setting

S(t, ξ) =
∑
γ

eiξτ(γ)τ ](γ)ρ(τ(γ)− t)
| det(Id−Pγ)|1/2

,

we get

|S(t, ξ)| ≤ C1e
αt

1 + |ξ|
+ CAe

−(A−ε)t(1 + |ξ|)2d2+2d−1+ε.

Now consider the Gaussian weight

G(t, σ) = σ1/2

∫
R
|S(t, ξ)|2e−σξ2/2dξ, 0 < σ < 1.

The estimate for |S(t, ξ)| yields

|S(t, ξ)|2 ≤ 2C2
1e

2αt

(1 + |ξ|)2
+ 2C2

Ae
−2(A−ε)t(1 + |ξ|)2(2d2+2d−1+ε)

and

G(t, σ) ≤ C ′1σ
1/2e2αt + C ′Aσ

−(2d2+2d−1+ε)e−2(A−ε)t. (4.4)
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On the other hand, taking into account only the terms with τ(γ) =
τ(γ′), we get

G(t, σ) =
√

2π
∑
γ

∑
γ′

τ ](γ)τ ](γ′)e−(τ(γ)−τ(γ′))2/2σρ(τ(γ)− t)ρ(τ(γ′)− t)
| det(Id−Pγ)|1/2| det(Id−Pγ′)|1/2

≥ c
∑

t−1/2≤τ(γ)≤t+1/2

τ ](γ)| det(Id−Pγ)|−1

(4.5)
with c > 0 independent of t and σ.

Set τ(γ) = Tγ, τ
](γ) = T ]γ , aγ =

T ]γ
| det(Id−Pγ)| . Recall that b1 is the

abscissa of convergence of Dirichlet series (1.5) with q = 1.

Case 1. b1 < 0.
Let the lengths of the periodic rays be arranged as follows

T1 ≤ T2 ≤ ... ≤ Tn ≤ ....

It is well known (see for instance, [Cot17]) that

b1 = lim sup
n→∞

log |
∑

Tn≤Tγ aγ|
Tn

.

We fix a small ε > 0 so that −δ = b1 − 3ε/2 < 0.There exists an
increasing sequence n1 < n2 < ... < nm < ... such that limnj = +∞
and

log |
∑

Tnj≤Tγ
aγ|

Tnj
≥ b1 − ε. (4.6)

Choose m large so that

1 > e−δTnj + 2e−
ε
2
Tnj ,

1

Tnj
> e−

ε
2
Tnj for j ≥ m.

Set q1 = Tnm and write∑
q1≤Tγ

aγ =
∞∑
k=1

∑
kq1≤Tγ<(k+1)q1

aγ.

Assume that we have the estimates∑
kq1≤Tγ<(k+1)q1

aγ ≤ e−δkq1 , ∀k ≥ 1. (4.7)

Then ∑
q1≤Tγ

aγ ≤ e−δq1
∞∑
j=0

e−jδq1 = e−δq1
1

1− e−δq1
<

1

2
e(−δ+ε/2)q1 .
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Since −δ + ε/2 = b1 − ε, we obtain a contradiction with (4.6) for Tnm .
Consequently, there exists at least one k1 ≥ 1 such that∑

k1q1≤Tγ<(k1+1)q1

aγ > e−δk1q1 . (4.8)

The series
∑

Tγ≥(k1+1)q1
aγe
−λTγ has the same abscissa of convergence

b1. We repeat the procedure choosing q2 > (k1 + 1)q1, and obtain the
existence of k2 ≥ 1 such that∑

k2q2≤Tγ<(k2+1)q2

aγ > e−δk2q2 . (4.9)

By iteration we find two sequences {qj}, {kj} such that

qj+1 > (kj + 1)qj, kj ≥ 1,

and a sequence of disjoint intervals

[kjqj, (kj + 1)qj], j = 1, 2, ...

so that ∑
kjqj≤Tγ≤(kj+1)qj

aγ > e−δkjqj . (4.10)

The periods qj may change applying the above procedure but for sim-
plicity we use the same notation.

Next, suppose that∑
kjqj+p≤Tγ≤kjqj+p+1

aγ < e−δkjqj/qj, p = 0, 1, ..., qj − 1.

By using triangle inequality, we obtain a contradiction with (4.10).
Thus for some 0 ≤ pj ≤ qj − 1 we have∑

kjqj+pj≤Tγ≤kjqj+pj+1

aγ ≥ e−δkjqj/qj > e(−δ−ε/2)kjqj .

Choosing tj = kjqj + pj + 1/2, we deduce∑
tj−1/2≤Tγ≤tj+1/2

aγ ≥ e(b1−2ε)tj .

Therefore from (4.4) and (4.5) with t = tj we obtain

c1σ
1/2e2αtj + c2σ

−(2d2+2d−1+ε)e−2(A−ε)tj ≥ e(b1−2ε)tj (4.11)

with constants c1, c2 > 0 independent of tj. Now choose

σ = c−2
1 e2(b1−3ε−2α)tj < 1.

Since
b1 − 3ε− (b1 − 2ε) + 2ε = ε,
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we have

e−εtj + c3e
−2(2d2+2d−1/2+ε)(b1−3ε−2α)tje−2(A−(1/2)ε)tj ≥ 1.

Taking

A = −(2d2 + 2d− 1/2)(b1 − 2α) + 3ε(2d2 + 2d− b1 − 2α

3
+ ε)

and letting tj → +∞, we obtain a contradiction. Consequently, for
some 0 ≤ k0 ≤ 0, 0 ≤ `0 ≤ d2−d, setting ε̃ = 3ε(2d2+2d− b1−2α

3
+ε)+ε,

we have

]{µ̃ ∈ Res (−iPk0,l0) : Im µ̃ > (2d2 + 2d− 1/2)(b1 − 2α)− ε̃} =∞.

This implies (1.6) with ε replaced by ε̃, observing that the poles µ̃ ∈
Res (−iPk0,`0) coincide with the poles λ̃ of the meromorphic continua-
tion of η1(iλ).

Case 2. b1 > 0.
For b1 we have the representation

b1 = lim sup
n→∞

log |
∑

Tγ≤Tn aγ|
Tn

.

We fix a small ε > 0 so that b1 − 2ε > 0. For every small ε1 > 0 the
estimates for the numbers of periodic rays in Section 1 imply

e(h−ε1)Tn ≤ n ≤ e(h+ε1)Tn , Tn ≥ Cε1 . (4.12)

We choose ε1 = h
4b1
ε and arrange

h− ε1
h+ ε1

(b1 −
3

2
ε) = (b1 −

3

2
ε)− 2ε1

h+ ε1
(b1 −

3

2
ε)

> (b1 −
3

2
ε)− 2ε1b1

h
= b1 − 2ε. (4.13)

There exists an increasing sequence n1 < n2 < ... < nm < ... such
that limnj = +∞ and

log |
∑

Tγ≤Tnj
aγ|

Tnj
≥ b1 − ε. (4.14)

Set log n1 = p1 for Tn1 large using (4.12), we get

∑
Tγ≤Tn1

aγ ≤
[
p1
h−ε1

]∑
k=0

∑
k<Tγ≤(k+1)

aγ.
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For simplicity of the notation set d1 = b1 − 3
2
ε > 0. Assume that for

k = 0, ..., [ p1
h−ε1 ] we have ∑

k<Tγ≤(k+1)

aγ ≤ e
h−ε1
h+ε1

d1k.

This implies

∑
Tγ≤Tn1

aγ ≤
[
p1
h−ε1

]∑
k=0

e
h−ε1
h+ε1

d1k =
e
h−ε1
h+ε1

d1([
p1
h−ε1

]+1) − 1

e
h−ε1
h+ε1

d1 − 1
.

Applying the inequality ex − 1 ≥ x for x ≥ 0 and exploiting (4.12), we
deduce ∑

Tγ≤Tn1

aγ <
e
h−ε1
h+ε1

d1([
p1
h−ε1

]+1)

b1 − 2ε
<

ed1

b1 − 2ε
e

logn1
h+ε1

d1

≤ 1

2
e(d1+ε/2)Tn1 =

1

2
e(b1−ε)Tn1

for large Tn1 depending of ed1
b1−2ε

. We obtain a contradiction with (4.14).

Taking into account (4.13) , for some 0 ≤ k1 ≤ [ p1
h−ε1 ] we have∑

k1<Tγ≤k1+1

aγ ≥ e(b1−2ε)k1 .

Following this procedure, we construct a sequence of integers {kj}, kj+1 >
kj + 2 satisfying ∑

kj≤Tγ≤kj+1

aγ ≥ e(b1−2ε)kj .

We choose tj = kj + 1/2 and arrange∑
tj−1/2≤Tγ≤tj+1/2

aγ ≥ e(b1−2ε)tj .

Finally, we obtain (4.11) and a repetition of the argument in Case 1
implies (1.6).

Case 3. b1 = 0.
For small u > 0 consider the Dirichlet series

ηu(s) =
∑
γ

T ]γe
−(s+u)Tγ

| det(Id−Pγ)|
=
∑
γ

aγe
−uTγe−sTγ .



ON THE NUMBER OF POLES 21

This series has abscissa de convergence −u < 0 and we may apply the
results of the Case 1. For a suitable sequence tj →∞ depending of −u
we obtain the estimates

e−u(tj−1/2)
∑

tj−1/2≤Tγ≤tj+1/2

aγ ≥
∑

tj−1/2≤Tγ≤tj+1/2

aγe
−uTγ ≥ e(−u−2ε)tj .

Consequently, ∑
tj−1/2≤Tγ≤tj+1/2

aγ ≥ e−u/2e−2εtj > e(−u/2−2ε)tj .

These lower bounds are the estimates (4.11) with b1 replaced by −u/2.
The argument in the Case 1 implies

]{µj ∈ Resη1 : Reµj > (2d2+2d−1/2)(−2α)−(ε+(2d2+2d−1/2)u/2)} =∞.
For small u we arrange (2d2 +2d−1/2)u/2 < ε and since ε is arbitrary,
we obtain (1.6) with b1 = 0. This completes the proof of Theorem 1.2.
�

Appendix

In this Appendix we prove Proposition 1.2. First,

det(Id−Pγ) = det(Id−DxϕTγ |Es(x)) det(Id−DxϕTγ |Es(x))

= det(DxϕTγ |Eu(x)) det(Id−DxϕTγ |Es(x)) det(Dxϕ−Tγ |Eu(x)− Id), x ∈ γ.
Consequently,

| det(Id−Pγ)|−1 = | detDxϕTγ |Eu(x)|−1

×| det(Id−DxϕTγ |Es(x))|−1| det(Id−Dxϕ−Tγ |Eu(x))|−1.

For large Tγ we have

‖DxϕTγ |Es(x)‖ ≤ Ce−δTγ , ‖Dxϕ−Tγ |Eu(x)‖ ≤ Ce−δTγ , δ > 0,∀Tγ
with constants C > 0, δ > 0 independent of Tγ since the flow ϕt is
uniformly hyperbolic (see [CP22, Appendix A]). Thus for large Tγ we
obtain

c1| detDxϕTγ |Eu(x)|−1 ≤ | det(Id−Pγ)|−1 ≤ C1| detDxϕTγ |Eu(x)|−1

(A.1)
with 0 < c1 < C1 independent of Tγ. We have

detDxϕTγ |Eu(x) = edγ , x ∈ γ
with

dγ = log
(
λ1,γ...λd−1,γ) > 0,
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λj,γ being the eigenvalues of DxϕTγ |Eu(x) with modulus greater than 1.
The above estimate shows that the abscissa of convergence of the series∑

γ

T ]γe
−sTγ+δγ , δγ = −dγ, Re s� 1

coincides with b1.
Our purpose is to express b1 by some dynamical characteristics re-

lated to symbolic dynamics for several disjoint strictly convex obstacles.
To do this, we recall some well known results and we refer to [Ika88b],
[Ika88a], [Ika90a], [PP90] for more details. Let A(i, j)i,j=1,...,r be a r×r
matrix such that

A(i, j) =

{
1 if i 6= j,

0 if i = j.

Introduce the space

ΣA = {ξ = {ξi}∞i=−∞, ξi ∈ {1, , ..., r}, A(ξi, ξi+1) = 1, ∀i ∈ Z}.
Σ+
A = {ξ = {ξi}∞i=0, ξi ∈ {1, , ..., r}, A(ξi, ξj+1) = 1, ∀i ≥ 0}.

Given 0 < θ < 1, define a metric dθ on ΣA by dθ(ξ, η) = 0 if ξ = η and
dθ(ξ, η) = θk if ξ 6= η and k is the maximal integer such that ξi = ηi
for |i| < k. Similarly, we define a metric d+

θ on Σ+
A. Following [PP90,

Chapter 1], for a function F : ΣA → C define

varkF = sup{|F (ξ)− F (η)| : ξi = ηi, |i| < k}
and for G : Σ+

A → C define

varkG = sup{|G(ξ)−G(η)| : ξi = ηi, 0 ≤ i < k}
Let Fθ(ΣA), Fθ(Σ

+
A) be the set of Lipschitz functions with respect to

metrics dθ, d
+
θ , respectively, with norm

‖|f‖|θ = ‖f‖∞ + ‖f‖θ, ‖f‖θ = sup
k≥0

varkf

θk
.

Let σA be shift on ΣA and Σ+
A given by

(σAξ)i = ξi+1, ∀i ∈ Z, (σAξ)i = ξi+1, ∀i ≥ 0,

respectively. For every ξ ∈ ΣA there exists a unique reflecting ray γ(ξ)
with successive reflections points on ....∂Dj−1, ∂Dj, ∂Dj+1, ..., where
the order of reflections is determined by the sequence (ξ) (see [Ika88a]).
If (Pj(ξ))

∞
j=−∞ are the reflexion points of γ(ξ), we define the function

f(ξ) = ‖P0(ξ)− P1(ξ)‖.
It was proved in [Ika88a, Section 3], [PS10, Section 3] that one can
construct a sequence of phase functions {ϕξ,j(x)}∞j=−∞, such that for
each j the phase ϕξ,j is smooth in a neighborhood Uξ,j of the segment
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[Pj(ξ), Pj+1(ξ)] in Rd \ D̊ and

(i) ‖∇ϕξ,j(x)‖ = 1 on Uξ,j,

(ii) ∇ϕξ,j(Pj(ξ)) =
Pj+1(ξ)−Pj(ξ)
‖Pj+1(ξ)−Pj(ξ)‖ ,

(iii) ϕξ,j = ϕξ,j+1 on ∂Dj+1 ∩ Uξ,j ∩ Uξ,j+1,

(iv) for each x ∈ Uξ,j the surface Cξ,j(x) = {y ∈ Uξ,j : ϕξ,j(x) =
ϕξ,j(y)} is strictly convex with respect to its normal fiels ∇ϕξ,j.

Denote by κj(ξ), j = 1, ..., d− 1, the principal curvatures at P0(ξ) of
Cξ,0(x) and introduce

g(ξ) = − log
d−1∏
j=1

(1 + f(ξ)κj(ξ)).

Then
d−1∏
j=1

λj,γ(ξ) =

m(γ(ξ))∏
k=1

d−1∏
j=1

(1 + f(σkAξ)κj(σ
k
Aξ)).

It follows form the exponential instability of the billiard ball map
(see [Ika88a], [Sto99]) that f(ξ), g(ξ) become functions in Fθ(ΣA) with
0 < θ < 1 depending on the geometry of D. We define

Snh(ξ) = h(ξ) + h(σAξ) + ...+ h(σn−1
A ξ)

and for a periodic ray γ(ξ) we obtain

Tγ(ξ) = Sm(γ(ξ))f(ξ), δγ(ξ) = Sm(γ(ξ))g(ξ).

Consider the zeta function

Z(s) =
( ∞∑
n=1

1

n

∑
σnAξ=ξ

eSn(−sf(ξ)+g(ξ))
)
, Re s� 1

and observe that

− d

ds
Z(s) =

∑
γ

T ]γe
−sTγ+δγ .

Next, it is well known (see for instance [PP90, Chapter 1]) that given

h ∈ Fθ(ΣA), there exist functions h̃, χ ∈ Fθ1/2(ΣA) such that

h(ξ) = h̃(ξ) + χ(σAξ)− χ(ξ)

and h̃(ξ) ∈ Fθ1/2(Σ+
A) depends only on the coordinates (ξ0, ξ1, ...). We

denote this property by h ∼ h̃. Choose f̃ ∼ f, g̃ ∼ g with f̃ , g̃ ∈
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Fθ1/2(Σ
+
A) and write

Z(s) =
( ∞∑
n=1

1

n

∑
(σ+
A)nξ=ξ

eSn(−sf̃(ξ)+g̃(ξ))
)
.

The pressure P (F ) of a function F ∈ C(ΣA) is defined by

P (F ) = sup
ν

(
h(ν, σA) +

∫
ΣA

Fdν
)
,

where h(ν, σA) is the measure entropy of σA with respect to ν and the
supremum is taken over all probability measures ν on ΣA invariant with
respect to σA.

Following [PP90, Chapter 6], consider the suspended flow σft (ξ, s) =
(ξ, s+ t) on the space

Σf
A = {(ξ, s) : ξ ∈ ΣA, 0 ≤ s ≤ f(ξ)}

with identification (ξ, f(ξ)) ∼ (σA(ξ), 0). For a function G ∈ C(Σf
A)

define the pressure

P (G) = sup
νf

{h(νf , σ
f
t ) +

∫
ΣfA

Gdνf}, (A.2)

where h(νf , σ
f
t ) is the measure entropy and the supremum is taken

over all probability measures νf on Σf
A invariant with respect to σft .

The suspended flow σft is weakly mixing, if there are not t ∈ R \ {0}
with the property

t

2π
f(ξ) ∼M(ξ),

where M(ξ) ∈ C(ΣA : Z) has only integer values. According to [Sto99,

Lemma 5.2] and [Pet99, Lemma 1], the flow σft is weakly mixing
Applying the results of [PP90, Chapter 6], we deduce that the ab-

scissa of convergence b1 of Z(s) is determined as the root of the equation

P (−sf̃ + g̃) = P (−sf + g) = 0 with respect to s. This root is unique
since s→ P (−sf + g) is decreasing. Introduce the function

G(ξ, y) = −1

2

d−1∑
j=1

κj(ξ)

1 + κj(ξ)y
. (A.3)

Clearly,

g(ξ) = 2

∫ f(ξ)

0

G(ξ, y)dy.

Then [PP90, Proposition 6.1] says that P (−b1f + g) = 0 is equivalent
to b1 = P (2G). With the same argument we show that a1 = P (G).
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This completes the proof of Proposition 1.2. �

It easy to find a relation between P (2G) and P (g). Repeating the
argument of [PS10, Section 3], one obtains that there exist probability
measures νg, ν0 on ΣA invariant with respect to σA such that

P (g)∫
f(ξ)dνg

≤ b1 ≤
P (g)∫
f(ξ)dν0

.

Consequently, b1 has the same sign as P (g).
We close this Appendix proving that b1 = b2. Consider the zeta

function

Z1(s) =
( ∞∑
n=1

1

n

∑
(σ+
A)nξ=ξ

eSn(−sf̃(ξ)+g̃(ξ)+iπ)
)

related to (1.9). Introduce the complex Ruelle operator

(Lsu)(ξ) =
∑
σAη=ξ

e(−sf̃+g̃+iπ)(η)u(η), u ∈ Fθ1/2(Σ+
A).

Then for s = b1 this operator has no eigenvalues 1 since this implies
that the operator

(Lb1u)(ξ) =
∑
σAη=ξ

e(−b1f̃+g̃)(η)u(η)

has eigenvalue (-1). This is impossible because from P (−b1f̃ + g̃) = 0
one deduces that Lb1 has eigenvalue 1 and all other eigenvalues of Lb1
have modulus strictly less than 1 (see [PP90, Theorem 2.2]).This shows
that the function Z1(s) is analytic for s = b1, hence (1.9) has the same
property. Finally, similarly to (1.3), we write the function (1.9) as a
difference of two Dirichlet series with abscissas of convergence b1 and
b2. Therefore the inequality b2 < b1 leads to contradiction.
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