ON THE NUMBER OF POLES OF THE DYNAMICAL ZETA FUNCTIONS FOR BILLIARD FLOW

VESSELIN PETKOV

ABSTRACT. We study the number of the poles of the meromorphic continuation of the dynamical zeta functions η_N and η_D for several strictly convex disjoint obstacles satisfying non-eclipse condition. For η_N we obtain a strip $\{z \in \mathbb{C} : \operatorname{Re} s > \beta\}$ with infinite number of poles. For η_D we prove the same result assuming the boundary real analytic. Moreover, for η_N we obtain a characterisation of β by the pressure P(2G) of some function G on the space Σ_A^f related to the dynamical characteristics of the obstacle.

1. Introduction

Let $D_1, \ldots, D_r \subset \mathbb{R}^d$, $r \geqslant 3$, $d \geqslant 2$, be compact strictly convex disjoint obstacles with C^{∞} smooth boundary and let $D = \bigcup_{j=1}^r D_j$. We assume that every D_j has non-empty interior and throughout this paper we suppose the following non-eclipse condition

$$D_k \cap \text{convex hull } (D_i \cup D_j) = \emptyset,$$
 (1.1)

for any $1 \leqslant i, j, k \leqslant r$ such that $i \neq k$ and $j \neq k$. Under this condition all periodic trajectories for the billiard flow in $\Omega = \mathbb{R}^d \setminus \mathring{D}$ are ordinary reflecting ones without tangential intersections to the boundary of D. We consider the (non-grazing) billiard flow φ_t (see Section 2 for the definition). Next the periodic trajectories will be called periodic rays. For any periodic ray γ , denote by $\tau(\gamma) > 0$ its period, by $\tau^\sharp(\gamma) > 0$ its primitive period, and by $m(\gamma)$ the number of reflections of γ at the obstacles. Denote by P_γ the associated linearized Poincaré map (see section 2.3 in [PS17] and Section 2 for the definition). Let $\mathcal P$ be the set of all oriented periodic rays. Notice that some periodic rays have only one orientation, while others admits two (see [CP22, §2.3] for more details). Let Π be the set of all primitive periodic rays. Then the counting function of the lengths of periodic rays satisfies

$$\sharp \{ \gamma \in \Pi : \ \tau^{\sharp}(\gamma) \leqslant x \} \sim \frac{e^{hx}}{hx}, \quad x \to +\infty, \tag{1.2}$$

for some h > 0 (see for instance, [PP90, Theorem 6.5] for weakly mixing suspension symbolic flow and [Ika90a], [Mor91]). Hence there exists an

infinite number of primitive periodic trajectories and applying (1.2), for every sufficiently small $\epsilon > 0$ one obtains the estimate

$$e^{(h-\epsilon)x} \le \sharp \{ \gamma \in \mathcal{P} : \tau(\gamma) \leqslant x \} \leqslant e^{(h+\epsilon)x}, \ x \ge C_{\epsilon} \gg 1.$$

Moreover, for some positive constants c_1, C_1, f_1, f_2 we have (see for instance [Pet99, Appendix] and (A.1))

$$c_1 e^{f_1 \tau(\gamma)} \leqslant |\det(\mathrm{Id} - P_{\gamma})| \leqslant C_1 e^{f_2 \tau(\gamma)}, \quad \gamma \in \mathcal{P}.$$

By using these estimates, define for $Re(s) \gg 1$ two Dirichlet series

$$\eta_{\mathcal{N}}(s) = \sum_{\gamma \in \mathcal{P}} \frac{\tau^{\sharp}(\gamma) \mathrm{e}^{-s\tau(\gamma)}}{|\det(\mathrm{Id} - P_{\gamma})|^{1/2}}, \quad \eta_{\mathcal{D}}(s) = \sum_{\gamma \in \mathcal{P}} (-1)^{m(\gamma)} \frac{\tau^{\sharp}(\gamma) \mathrm{e}^{-s\tau(\gamma)}}{|\det(\mathrm{Id} - P_{\gamma})|^{1/2}},$$

where the sums run over all oriented periodic rays. The length $\tau^{\sharp}(\gamma)$, the period $\tau(\gamma)$ and $|\det(\operatorname{Id}-P_{\gamma})|^{1/2}$ are independent of the orientation of γ . We consider also for $q \geq 1$, $q \in \mathbb{N}$, the zeta function

$$\eta_{\mathbf{q}}(s) = q \sum_{\gamma \in \mathcal{P}, m(\gamma) \in q\mathbb{N}} \frac{\tau^{\sharp}(\gamma) \mathrm{e}^{-s\tau(\gamma)}}{|\det(\mathrm{Id} - P_{\gamma})|^{1/2}}, \operatorname{Re} s \gg 1.$$

Clearly, $\eta_N(s) = \eta_1(s)$. These zeta functions are important for the analysis of the distribution of the scattering resonances related to the Laplacian in $\mathbb{R}^d \setminus \bar{D}$ with Dirichlet and Neumann boundary conditions on ∂D (see [CP22, §1] for more details).

It was proved in [CP22, Theorem 1.1 and Theorem 4.1] that η_q admit a meromorphic continuation to \mathbb{C} with simple poles and integer residues. We have the equality

$$\eta_D(s) = \eta_2(s) - \eta_1(s), \text{ Re } s \gg 1,$$
(1.3)

hence η_D admits also a meromorphic continuation to $\mathbb C$ with simple poles and integer residues. The functions $\eta_q(s)$ are Dirichlet series with positive coefficients and by a classical theorem of Landau (see for instance, [Ber33, Théorème 1, Chapitre IV]) they have a pole $s=a_q$, where a_q is the abscissa of convergence of $\eta_q(s)$. On the other hand, from (1.3) it follows that some cancelations of poles are possible. In this direction, for d=2 [Sto01] and for $d\geqslant 3$ under some conditions [Sto12] Stoyanov proved that there exists $\varepsilon>0$ such that $\eta_D(s)$ is analytic for $\text{Re }s\geqslant a_1-\varepsilon$. The same result has been proved for d=3 and $a_1>0$ by Ikawa [Ika00].

The purpose of this paper is to prove that $\eta_q(s)$ has an infinite number of poles and to estimate $\beta \in \mathbb{R}$ such that the number of poles with $\text{Re } s > \beta$ is infinite. The same questions are more difficult for $\eta_D(s)$ since the existence of at least one pole has been established only for obstacles with real analytic boundary [CP22, Theorem 1.3] and for

obstacles with sufficiently small diameters [Ika90b], [Sto09]. Clearly, $a_q \leq a_1$. We have $a_2 = a_1$, since if $a_2 < a_1$, the function η_D will have a singularity at a_1 which is impossible because η_D is analytic for Re $s \geq a_1$ (see [Pet99, Theorem 1]).

Denote by Res η_q , Res η_D the set of poles of η_q and η_D , respectively. For Res η_q we prove the following

Theorem 1.1. For every $0 < \delta < 1$ there exists $\alpha_{\delta,q} < a_q$ such that for $\alpha < \alpha_{\delta,q}$ we have

$$\sharp \{\mu_j \in \operatorname{Res} \eta_q : \operatorname{Re} \mu_j \ge \alpha, |\mu_j| \leqslant r\} \ne \mathcal{O}(r^{\delta}). \tag{1.4}$$

If the boundary ∂D is real analytic, the same result holds for Res η_D .

More precisely, we show that for any $0 < \delta < 1$ there exists $\alpha_{\delta,q} < 0$ depending on the dynamical characteristics of D such that if $\alpha < \alpha_{\delta,q}$, for any constant $0 < C < \infty$ the estimate

$$\sharp \{\mu_j \in \operatorname{Res} \eta_q : \operatorname{Re} \mu_j \ge \alpha, \ |\mu_j| \leqslant r \} \leqslant Cr^{\delta}, \quad r \geqslant 1$$

does not hold. Similar results have been proved for Pollicott-Ruelle resonances for Anosov flows [JZ17, Theorem 2], for Axiom A flows [JT23, Theorem 4.1] and for Neumann and Dirichlet scattering resonances for obstacles D satisfying (1.1) in [Pet02] and [CP22, Theorem 1.3], respectively. According to Theorem 1.1, it follows that for large A > 0 in the region $\mathcal{D}_A = \{z \in \mathbb{C} : \operatorname{Re} z > -A\}$ there are infinite number poles $\mu \in \operatorname{Res} \eta_1 \cap \mathcal{D}_A$ and infinite number poles $\nu \in \operatorname{Res} \eta_2 \cap \mathcal{D}_A$. Therefore if η_D is analytic in \mathcal{D}_A , by (1.3) we deduce that we must have an infinite number of cancellations of poles μ with poles ν and the corresponding residues of the cancelled poles μ and ν must coincide. For obstacles with real analytic boundary Theorem 1.1 shows that this is impossible.

Remark 1.1. The proof of Theorem 1.1 works if the function η_D is not entire. As we mentioned above, this holds for obstacles with real analytic boundary.

It is interesting to find the maximal number $\beta_q < a_q$ such that the strip $\{z \in \mathbb{C} : \text{Re } z > \beta_q\}$ contains infinite number poles of η_q and to obtain so called *essential spectral gap*. This is a difficult open problem. Let $b_q < a_q$ be the abscissa of convergence of the series

$$\sum_{\gamma, m(\gamma) \in q\mathbb{N}} \frac{\tau^{\sharp}(\gamma) e^{-s\tau(\gamma)}}{|\det(\mathrm{Id} - P_{\gamma})|}, \operatorname{Re} s \gg 1$$
(1.5)

and let $\alpha = \max\{0, a_1\}$. In our second result we obtain a more precise result for Res η_1 .

Theorem 1.2. For any small $\epsilon > 0$ we have

$$\sharp \{\mu_j \in \text{Res } \eta_1 : \text{Re } \mu_j > (2d^2 + 2d - 1/2)(b_1 - 2\alpha) - \epsilon\} = \infty.$$
 (1.6)

Notice that

$$2d^2 + 2d - 1/2 = 2(d^2 + d - 1) + 3/2 = 2\dim G + 3/2,$$

where G is the (d-1)-Grassmannian bundle introduced in Section 2. In Appendix we prove that b_1 coincides with the abscissa of convergence of the series

$$\sum_{\gamma} \frac{\tau^{\sharp}(\gamma)e^{-s\tau(\gamma)}}{|\det(D_x \varphi_{\tau(\gamma)}|_{E_u(x)})|}, \operatorname{Re} s \gg 1, \tag{1.7}$$

where $E_u(x)$ is the unstable space of $x \in \gamma$ (see (2.1) for the notation). By using symbolic dynamics, we define (see (A.3)) a function $G(\xi, y) < 0$ on the space Σ_A^f related to dynamical characteristics of D (see Appendix) and prove the following

Proposition 1.2. The abscissas of convergence a_1 and b_1 are given by

$$a_1 = P(G), b_1 = P(2G),$$
 (1.8)

P(G) being the pressure of G defined by (A.2).

For $a_1 \leq 0$ we have $\alpha = 0$ and Theorem 1.2 is similar to [JZ17, Theorem 3] established for weakly mixing Anosov flows ψ_t , where instead of $b_1 = P(2G)$ one has the pressure $P(2\psi^u) < 0$ of the Sinai-Ruelle-Bowen potential

$$\psi^{u}(x) = -\frac{d}{dt} \left(\log |\det D_x \psi_t|_{E_u(x)} |\right)|_{t=0}.$$

Notice that for Anosov flow one has $P(\psi^u) = 0$, (see [BR75, Theorem 5]), while $a_1 = P(G)$ can be different from 0. More precise results for the poles of the semi-classical zeta function for contact Anosov flows have been obtained in [FT13], [FT17, Theorem 1.2].

Remark 1.3. The constant $2d^2 + 2d - 1/2$ in (1.6) is related to the estimate (3.3) of Fourier transform $\hat{F}_{A,1}$ in the local trace formula for $\eta_1(s)$ (see Theorem 3.2) and probably it is not optimal. A better estimate of $\hat{F}_{A,1}$ can be obtained if the bound of the number of poles (3.1) is improved (see for example, [AFW17], where the Hausdorff dimension of the trapped set K is involved).

We have $b_1 = b_2$ since the series

$$\sum_{\gamma} \frac{(-1)^{m(\gamma)} \tau^{\sharp}(\gamma) e^{-s\tau(\gamma)}}{|\det(\operatorname{Id} - P_{\gamma})|}, \operatorname{Re} s \gg 1$$
(1.9)

is analytic for Re $s \ge b_1$. We discuss this question at the end of Appendix. Theorem 1.2 can be generalized for Res η_2 and one obtains (1.6). The proof works with some modifications.

The paper is organised as follows. In Section 2 we collect some definitions and notations from [CP22] which are necessary for the exposition. In particular, we define the non-grazing billiard flow φ_t , the (d-1)-Grassmannian bundle G, the bundles $\mathcal{E}_{k,\ell}$ over G and the operators $\mathbf{P}_{k,\ell}$, $0 \le k \le d$, $0 \le \ell \le d^2$. In Section 3 we obtain local trace formulas combining the results in [JT23, §6.1] and [CP22, Lemma 3.1]. In Section 4 we prove Theorems 1.1 and 1.2. Finally in Appendix we use symbolic dynamics and establish Proposition 1.2.

Acknowledgements. We would like to thank Long Jin, Frédéric Naud and Zhongkai Tao for the useful and stimulating discussions.

2. Preliminaries

We recall the definition of billiard flow ϕ_t described in [CP22, §2.1]. Denote by $S\mathbb{R}^d$ the unit tangent bundle of \mathbb{R}^d and by $\pi: S\mathbb{R}^d \to \mathbb{R}^d$ the natural projection. For $x \in \partial D_j$, denote by $n_j(x)$ the inward unit normal vector to ∂D_j at the point x pointing into D_j . Set

$$\mathcal{D} = \{(x, v) \in S\mathbb{R}^d : x \in \partial D\}.$$

We say that $(x, v) \in T_{\partial D_j}(\mathbb{R}^d)$ is incoming (resp. outgoing) if we have $\langle v, n_j(x) \rangle > 0$ (resp. $\langle v, n_j(x) \rangle < 0$). Introduce

$$\mathcal{D}_{\text{in}} = \{(x, v) \in \mathcal{D} : (x, v) \text{ is incoming}\},\$$

 $\mathcal{D}_{\text{out}} = \{(x, v) \in \mathcal{D} : (x, v) \text{ is outgoing}\}.$

Define the grazing set $\mathcal{D}_{g} = T(\partial D) \cap \mathcal{D}$ and obtain

$$\mathcal{D} = \mathcal{D}_g \sqcup \mathcal{D}_{in} \sqcup \mathcal{D}_{out}.$$

The billiard flow $(\phi_t)_{t\in\mathbb{R}}$ is the complete flow acting on $S\mathbb{R}^d \setminus \pi^{-1}(\mathring{D})$ which is defined as follows. For $(x, v) \in S\mathbb{R}^d \setminus \pi^{-1}(\mathring{D})$ set

$$\tau_{\pm}(x,v) = \pm \inf\{t \geqslant 0 : x \pm tv \in \partial D\}.$$

For $(x, v) \in \mathcal{D}_{\text{in/out}}$ denote by $v' \in \mathcal{D}_{\text{out/in}}$ the image of v by the reflexion with respect to $T_x(\partial D)$ at $x \in \partial D_i$, given by

$$v' = v - 2\langle v, n_i(x) \rangle n_i(x), \quad v \in S_x(\mathbb{R}^d), \quad x \in \partial D_i.$$

Then for $(x, v) \in (S\mathbb{R}^d \setminus \pi^{-1}(D)) \cup \mathcal{D}_g$ define

$$\phi_t(x, v) = (x + tv, v), \quad t \in [\tau_-(x, v), \tau_+(x, v)],$$

while for $(x, v) \in \mathcal{D}_{\text{in/out}}$, we set

$$\phi_t(x,v) = (x+tv,v) \quad \text{if} \quad \begin{cases} (x,v) \in \mathcal{D}_{\text{out}}, \ t \in [0,\tau_+(x,v)], \\ \text{or} \ (x,v) \in \mathcal{D}_{\text{in}}, \ t \in [\tau_-(x,v),0], \end{cases}$$

and

$$\phi_t(x,v) = (x+tv',v') \quad \text{if} \quad \begin{cases} (x,v) \in \mathcal{D}_{\text{in}}, \ t \in]0, \tau_+(x,v)], \\ \text{or} \ (x,v) \in \mathcal{D}_{\text{out}}, \ t \in [\tau_-(x,v'),0]. \end{cases}$$

We extend ϕ_t to a complete flow still denoted by ϕ_t having the property

$$\phi_{t+s}(x,v) = \phi_t(\phi_s(x,v)), \quad t,s \in \mathbb{R}, \quad (x,v) \in S\mathbb{R}^d \setminus \pi^{-1}(\mathring{D}).$$

Next we introduce the non-grazing set M as

$$M = B/\sim, \quad B = S\mathbb{R}^d \setminus \left(\pi^{-1}(\mathring{D}) \cup \mathcal{D}_{g}\right),$$

where $(x, v) \sim (y, w)$ if and only if (x, v) = (y, w) or

$$x = y \in \partial D$$
 and $w = v'$.

The set M is endowed with the quotient topology. We change the notation and pass from ϕ_t to the non-grazing flow φ_t , which is defined on M as follows. For $(x, v) \in (S\mathbb{R}^d \setminus \pi^{-1}(D)) \cup \mathcal{D}_{in}$ define

$$\varphi_t([(x,v)]) = [\phi_t(x,v)], \quad t \in]\tau_-^{\mathsf{g}}(x,v), \tau_+^{\mathsf{g}}(x,v)[,$$

where [z] denotes the equivalence class of $z \in B$ for the relation \sim , and

$$\tau_{\pm}^{\mathrm{g}}(x,v) = \pm \inf\{t > 0 : \phi_{\pm t}(x,v) \in \mathcal{D}_{\mathrm{g}}\}.$$

Thus φ_t is continuous, but the flow trajectory of (x,v) for times $t \notin]\tau_-^{\mathrm{g}}(x,v), \tau_+^{\mathrm{g}}(x,v)[$ is not defined. Clearly, we may have $\tau_\pm^{\mathrm{g}}(x,v) = \pm \infty$, while $\tau_\pm^{\mathrm{g}}(x,v) \neq 0$ for $(x,v) \in \mathcal{D}_{\mathrm{in}}$. Note that the above formula indeed defines a flow on M because each $(x,v) \in B$ has a unique representative in $(S\mathbb{R}^d \setminus \pi^{-1}(\mathring{D})) \cup \mathcal{D}_{\mathrm{in}}$. Following [DSW24, Section 3], we may define smooth charts on $M = B/\sim$ and φ_t becomes C^∞ non complete flow with respect to new charts.

Throughout we work with the smooth flow φ_t and denote by X its the generator. Let $A(z) = \{t \in \mathbb{R} : \pi(\varphi_t(z)) \in \partial D\}$. The trapped set K of φ_t is the set of points $z \in M$ which satisfy $-\tau_-^{\mathrm{g}}(z) = \tau_+^{\mathrm{g}}(z) = +\infty$ and

$$\sup A(z) = -\inf A(z) = +\infty.$$

By definition, $\varphi_t(z)$ is defined for all $t \in \mathbb{R}$ whenever $z \in K$. The flow φ_t is called *uniformly hyperbolic* on K, if for each $z \in K$ there exists a decomposition

$$T_z M = \mathbb{R}X(z) \oplus E_u(z) \oplus E_s(z),$$
 (2.1)

which is $d\varphi_t$ -invariant with $\dim E_s(z) = \dim E_u(z) = d-1$, such that for some constants C > 0, $\nu > 0$, independent of $z \in K$, and some smooth norm $\|\cdot\|$ on TM, we have

$$\|d\varphi_t(z) \cdot v\| \leqslant \begin{cases} Ce^{-\nu t} \|v\|, & v \in E_s(z), \quad t \geqslant 0, \\ Ce^{-\nu |t|} \|v\|, & v \in E_u(z), \quad t \leqslant 0. \end{cases}$$
 (2.2)

The spaces $E_s(z)$ and $E_u(z)$ depend continuously on z (see [Has02, Section 2]).

The flow φ_t is uniformly hyperbolic on K (for the proof see [CP22, Appendix A]). Take a small neighborhood V of K in M, with smooth boundary and embed V into a compact manifold without boundary N. We extend arbitrarily X to obtain a smooth vector field on N, still denoted by X. The associated flow is still denoted by φ_t . Note that the new flow φ_t is now complete. Introducing the surjective map

$$\pi_M: B \ni (x,\xi) \to [(x,\xi)] \in M,$$

we have $\varphi_t \circ \pi_M = \pi_M \circ \phi_t$ and there is a bijection between periodic orbits of ϕ_t and φ_t presevering the periods of the closed trajectories of ϕ_t , while the corresponding Poincaré maps are conjugated (see [DSW24, Section 3]).

Consider the (d-1)-Grassmannian bundle

$$\pi_G: G \to N$$

over N. More precisely, for every $z \in N$, the set $\pi_G^{-1}(z)$ consists of all (d-1)-dimensional planes of T_zN . The dimension of $\pi_G^{-1}(z)$ is d(d-1) and G is a smooth compact manifold with dim $G = d^2 + d - 1$. We lift φ_t to a flow $\widetilde{\varphi}_t : G \to G$ defined by

 $\widetilde{\varphi}_t(z, E) = (\varphi_t(z), d\varphi_t(z)(E)), \ z \in N, \ E \subset T_z N, \ d\varphi_t(z)(E) \subset T_{\varphi_t(z)} N.$ Introduce the set

$$\widetilde{K}_u = \{(z, E_u(z)) : z \in K\} \subset G.$$

Clearly, \widetilde{K}_u is invariant under the action of $\widetilde{\varphi}_t$, since $d\varphi_t(z)(E_u(z)) = E_u(\varphi_t(z))$. The set \widetilde{K}_u will be seen as the trapped set of the restriction of $\widetilde{\varphi}_t$ to a neighborhood of \widetilde{K}_u and the flow $\widetilde{\varphi}_t$ is uniformly hyperbolic on \widetilde{K} (see [BR75, Lemma A.3], [CP22, §2.5]). Let \widetilde{X} be the generator of $\widetilde{\varphi}_t$ and let \widetilde{V}_u be a small neighborhood of \widetilde{K}_u in G with smooth boundary $\partial \widetilde{V}_u$ (see[CP22, §2.7]). Define

$$\Gamma_{\pm}(\widetilde{X}) = \{ z \in \widetilde{V}_u : \widetilde{\varphi}_t(z) \in \widetilde{V}_u, \ \mp t > 0 \}.$$

Denote by clos \widetilde{V}_u the closure of \widetilde{V}_u . Let $\widetilde{\rho} \in C^{\infty}(\operatorname{clos} \widetilde{V}_u, \overline{\mathbb{R}}_+)$ be the defining function for \widetilde{V}_u such that $\partial \widetilde{V}_u = \{z \in \operatorname{clos} \widetilde{V}_u : \widetilde{\rho}(z) = 0\}$ and

 $d\tilde{\rho}(z) \neq 0$ for any $z \in \partial \widetilde{V}_u$. Following [GMT21, Lemma 2.3], for any small neighborhood \widetilde{W}_0 of $\partial \widetilde{V}_u$ there exists a vector field \widetilde{Y} on clos \widetilde{V}_u arbitrary close to \widetilde{X} in C^{∞} -topology and flow $\widetilde{\psi}_t$ generated by \widetilde{Y} with the properties:

(1) supp
$$(\widetilde{Y} - \widetilde{X}) \subset \widetilde{W}_0$$
.

(2) (Convexity condition) For any defining function ρ of \widetilde{V}_u and any $\omega \in \partial \widetilde{V}_u$ we have

$$\widetilde{Y}\rho(\omega) = 0 \Longrightarrow \widetilde{Y}^2\rho(\omega) < 0.$$

(3) $\Gamma_{\pm}(\widetilde{X}) = \Gamma_{\pm}(\widetilde{Y})$, where $\Gamma_{\pm}(\widetilde{Y})$ is defined as above by $\widetilde{\psi}_t$.

By [DG16, Lemma 1.1], we may find a smooth extension of \widetilde{Y} on G (still denoted by \widetilde{Y}) so that for every $\omega \in G$ and $T \geq 0$, we have

$$\omega, \widetilde{\psi}_T(\omega) \in \operatorname{clos} \widetilde{V}_u \implies \widetilde{\psi}_t(\omega) \in \operatorname{clos} \widetilde{V}_u, \ \forall t \in [0, T].$$
 (2.3)

In the following we fix \widetilde{V}_u , \widetilde{W}_0 , \widetilde{Y} and the flow $\widetilde{\psi}_t$ with the properties mentioned above. Thus we obtain an *open hyperbolic system* satisfying the conditions (A1) - (A4) in [DG16, §0] (see also [JT23, §2.1]).

Next repeating the setup in [CP22, §2.6], we introduce some bundles passing to open hyperbolic system for bundles. First, define the tautological vector bundle $\mathcal{E} \to G$ by

$$\mathcal{E} = \{(\omega, u) \in \pi_G^*(TN) \ : \ \omega \in G, \ u \in [\omega]\},\$$

where $[\omega] = E$ denotes the (d-1) dimensional subspace of $T_{\pi_G(\omega)}N$ represented by $\omega = (z, E)$ and $\pi_G^*(TN)$ is the pullback bundle of TN. Second, introduce the "vertical bundle" $\mathcal{F} \to G$ by

$$\mathcal{F} = \{(\omega, W) \in TG : d\pi_G(\omega) \cdot W = 0\},\$$

which is a subbundle of the bundle $TG \to G$. The dimensions of the fibres \mathcal{E}_{ω} and \mathcal{F}_{ω} of \mathcal{E} and \mathcal{F} over ω are given by

$$\dim \mathcal{E}_{\omega} = d - 1$$
, $\dim \mathcal{F}_{\omega} = \dim \ker d\pi_G(\omega) = d^2 - d$

for any $\omega \in G$ with $\pi_G(\omega) = z$. Finally, set

$$\mathcal{E}_{k,\ell} = \wedge^k \mathcal{E}^* \otimes \wedge^\ell \mathcal{F}, \quad 0 \leqslant k \leqslant d-1, \quad 0 \leqslant \ell \leqslant d^2 - d,$$

where \mathcal{E}^* is the dual bundle of \mathcal{E} , that is, we replace the fibre \mathcal{E}_{ω} by its dual space \mathcal{E}_{ω}^* .

Next we use the notation $\omega = (z, \eta) \in G$ and $u \otimes v \in \mathcal{E}_{k,\ell}|_{\omega}$. By using the flow $\tilde{\psi}_t$, introduce a flow $\Phi_t^{k,\ell} : \mathcal{E}_{k,\ell} \to \mathcal{E}_{k,\ell}$ by

$$\Phi_t^{k,\ell}(\omega, u \otimes v) = \Big(\tilde{\psi}_t(\omega), \ b_t(\omega) \cdot \Big[\Big(d\varphi_t(\pi_G(\omega))^{-\top} \Big)^{\wedge k} (u) \otimes d\tilde{\psi}_t(\omega)^{\wedge \ell}(v) \Big] \Big), \tag{2.4}$$

with

$$b_t(\omega) = |\det d\varphi_t(\pi_G(\omega))|_{[\omega]}|^{1/2} \cdot |\det \left(d\tilde{\psi}_t(\omega)|_{\ker d\pi_G}\right)|^{-1},$$

where $^{-\top}$ denotes the inverse transpose. Consider the transfer operator

$$\Phi_{-t}^{k,\ell,*}: C^{\infty}(G,\mathcal{E}_{k,\ell}) \to C^{\infty}(G,\mathcal{E}_{k,\ell})$$

defined by

$$\Phi_{-t}^{k,\ell,*}\mathbf{u}(\omega) = \Phi_t^{k,\ell} \left[\mathbf{u}(\widetilde{\psi}_{-t}(\omega)) \right], \quad \mathbf{u} \in C^{\infty}(G, \mathcal{E}_{k,\ell})$$
 (2.5)

and let $\mathbf{P}_{k,\ell}: C^{\infty}(G,\mathcal{E}_{k,\ell}) \to C^{\infty}(G,\mathcal{E}_{k,\ell})$ be the generator of $\Phi_{-t}^{k,\ell,*}$ defined by

$$\mathbf{P}_{k,\ell}\mathbf{u} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi_{-t}^{k,\ell,*} \mathbf{u} \right) \bigg|_{t=0}, \quad \mathbf{u} \in C^{\infty}(G, \mathcal{E}_{k,\ell}).$$

We obtain

$$\mathbf{P}_{k,\ell}(f\mathbf{u}) = (\mathbf{P}_{k,\ell}f)\mathbf{u} + f(\mathbf{P}_{k,\ell}\mathbf{u}), \ f \in C^{\infty}(G), \ \mathbf{u} \in C^{\infty}(G, \mathcal{E}_{k,\ell}).$$

Notice that we obtain the same setup as in Definition 6.1 in [JT23, $\S6.1$]. In the last paper the authors deal with a general Axiom A flow with several basic sets. In our case we have only one basic set and we may apply the results of [DG16] and [JT23]. With some constant C > 0 we have

$$||e^{-t\mathbf{P}_{k,\ell}}||_{L^2(G,\mathcal{E}_{k,\ell})\to L^2(G,\mathcal{E}_{k,\ell})} \le Ce^{Ct}, \ t\ge 0$$

and

$$(\mathbf{P}_{k,\ell}+s)^{-1} = \int_0^\infty e^{-t(\mathbf{P}_{k,\ell}+s)} dt : L^2(G,\mathcal{E}_{k,\ell}) \to L^2(G,\mathcal{E}_{k,\ell}), \text{ Re } s \gg 1.$$

Introduce the operator

$$\mathbf{R}_{k,\ell}(s) = \mathbf{1}_{\widetilde{V}_u}(\mathbf{P}_{k,\ell} + s)^{-1} \mathbf{1}_{\widetilde{V}_u} : C_c^{\infty}(\widetilde{V}_u, \mathcal{E}_{k,\ell}) \to \mathcal{D}'(\widetilde{V}_u, \mathcal{E}_{k,\ell}), \quad \operatorname{Re}(s) \gg 1,$$

where $\mathcal{D}'(\widetilde{V}_u, \mathcal{E}_{k,\ell})$ denotes the space of $\mathcal{E}_{k,\ell}$ -valued distributions. Applying [DG16, Theorem 1], we obtain a meromorphic extension of $\mathbf{R}_{k,\ell}(s)$ to the whole plane \mathbb{C} with simple poles and positive integer residues.

For $\omega \in G$ and t > 0 consider the parallel transport map

$$\alpha_{\omega,t}^{k,\ell} = \alpha_{1,\omega,t} \otimes \alpha_{2,\omega,t} : \Lambda^k \mathcal{E}_{\omega}^* \otimes \Lambda^{\ell} \mathcal{F}_{\omega} \longrightarrow \Lambda^k \mathcal{E}_{\tilde{\psi}_t(\omega)}^* \otimes \Lambda^{\ell} \mathcal{F}_{\tilde{\psi}_t(\omega)}$$

given by

$$\mathbf{u} \otimes \mathbf{v} \longmapsto (e^{-t\mathbf{P}_{k,\ell}}(\mathbf{u} \otimes \mathbf{v}))(\widetilde{\psi}(t)),$$

where \mathbf{u}, \mathbf{v} are some sections of \mathcal{E}_{ω}^* and \mathcal{F}_{ω} over ω , respectively. The definition does not depend on the choice of \mathbf{u} and \mathbf{v} (see [DG16, Eq. (0.8)]). For a periodic trajectory $\widetilde{\gamma}: t \to \widetilde{\gamma}(t) = (\gamma(t), E_u(\gamma(t)))$ with period T we define

$$\operatorname{tr}(\alpha_{\tilde{\gamma}}^{k,\ell}) = \operatorname{tr}\alpha_{\tilde{\gamma}(t),T}^{k,\ell}$$

(see [DG16], [CP22]) and the trace is independent of the choice of the point $\tilde{\gamma}(t) \in \tilde{\gamma}$.

Finally, if $\widetilde{\chi} \in C_c^{\infty}(\widetilde{V}_u)$ is equal to 1 near the trapping set \widetilde{K}_u we have the Guillemin trace formula (see [DG16, (4.6)], [SWB23, §3.1],[CP22, §3.2]) with the flat trace

$$\operatorname{tr}^{\flat}(\widetilde{\chi}e^{-t\mathbf{P}_{k,\ell}}\widetilde{\chi}) = \sum_{\widetilde{\gamma}} \frac{\tau^{\sharp}(\gamma)\operatorname{tr}(\alpha_{\widetilde{\gamma}}^{k,\ell})\delta(t-\tau(\gamma))}{|\det(\operatorname{Id}-\widetilde{P}_{\gamma})|}, \ t > 0.$$
 (2.6)

Here both sides are distributions on $(0, \infty)$ and the sum runs over all periodic orbits $\tilde{\gamma}$ of $\tilde{\varphi}_t$,

$$\widetilde{P}_{\gamma} = d\widetilde{\varphi}_{-\tau(\gamma)}(\omega_{\widetilde{\gamma}})|_{\widetilde{E}_{u}(\omega_{\widetilde{\gamma}}) \oplus \widetilde{E}_{s}(\omega_{\widetilde{\gamma}})}$$

is the linearized Poincaré map of the periodic orbit $\widetilde{\gamma}(t)$ of the flow $\widetilde{\varphi}_t$ and $\omega_{\widetilde{\gamma}} \in \text{Im}(\widetilde{\gamma})$ is any reference point taken in the image of $\widetilde{\gamma}$.

To treat the zeta function related only to periodic rays with number of reflections $m(\gamma) \in q\mathbb{N}, q \geq 2$, we consider the setup introduced in [CP22, §4.1] and we recall it below. For $q \geq 2$ define the *q*-reflection bundle $\mathcal{R}_q \to M$ by

$$\mathcal{R}_q = \left(\left[S\mathbb{R}^d \setminus \left(\pi^{-1}(\mathring{D}) \cup \mathcal{D}_g \right) \right] \times \mathbb{R}^q \right) / \approx, \tag{2.7}$$

where the equivalence classes of the relation \approx are defined as follows. For $(x, v) \in S\mathbb{R}^d \setminus \left(\pi^{-1}(\mathring{D}) \cup \mathcal{D}_g\right)$ and $\xi \in \mathbb{R}^q$, we set

 $[(x, v, \xi)] = \{(x, v, \xi), (x, v', A(q) \cdot \xi)\} \quad \text{if } (x, v) \in \mathcal{D}_{\text{in}}, \ (x, v') \in \mathcal{D}_{\text{out}},$ where A(q) is the $q \times q$ matrix with entries in $\{0, 1\}$ given by

$$A(q) = \begin{pmatrix} 0 & & & 1 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix}.$$

Clearly, the matrix A(q) yields a shift permutation

$$A(q)(\xi_1, \xi_2, ..., \xi_q) = (\xi_q, \xi_1, ..., \xi_{q-1}).$$

This indeed defines an equivalence relation since $(x, v') \in \mathcal{D}_{out}$ whenever $(x, v) \in \mathcal{D}_{in}$. Note that

$$A(q)^q = \text{Id}, \quad \text{tr } A(q)^j = 0, \quad j = 1, \dots, q - 1.$$
 (2.8)

Define a smooth structure of \mathcal{R}_q as in [CP22, §4.1] and introduce the bundle

$$\mathcal{E}_{k,\ell}^q = \mathcal{E}_{k,\ell} \otimes \pi_G^* \mathcal{R}_q,$$

where $\pi_G^* \mathcal{R}_q$ is the pullback of \mathcal{R}_q by π_G so $\pi_G^* \mathcal{R}_q \to G$ is a vector bundle over G. Consider a small smooth neighborhood V of K. We embed V into a smooth compact manifold without boundary N, and we fix an extension of \mathcal{R}_q to N. Consider any connection ∇^q on the extension of \mathcal{R}_q which coincides with d^q near K, and denote by

$$P_{q,t}(z): \mathcal{R}_q(z) \to \mathcal{R}_q(\varphi_t(z))$$

the parallel transport of ∇^q along the curve $\{\varphi_{\tau}(z) : 0 \leq \tau \leq t\}$. We have a smooth action of φ_t^q on \mathcal{R}_q which is given by the horizontal lift of φ_t

$$\varphi_t^q(z,\xi) = (\varphi_t(z), P_{q,t}(z) \cdot \xi), \quad (z,\xi) \in \mathcal{R}_q.$$

We may lift the flow φ_t to a flow $\Phi_t^{k,\ell,q}$ on $\mathcal{E}_{k,\ell}^q$ which is defined locally near \widetilde{K}_u by

$$\Phi_t^{k,\ell,q}(\omega, u \otimes v \otimes \xi)$$

$$= \left(\widetilde{\varphi}_t(\omega), \ b_t(\omega) \cdot \left[\left(d\varphi_t(\pi_G(\omega))^{-\top} \right)^{\wedge k} (u) \otimes \left(d\widetilde{\varphi}_t(\omega) \right)^{\wedge \ell} (v) \otimes P_{q,t}(z) \cdot \xi \right] \right)$$

for any $\omega = (z, E) \in G$, $u \otimes v \otimes \xi \in \mathcal{E}^q_{k,\ell}(\omega)$ and $t \in \mathbb{R}$. Following [CP22, §4.1], we deduce that for any periodic orbit $\gamma = (\varphi_\tau(z))_{\tau \in [0,\tau(\gamma)]}$, the trace

$$\operatorname{tr}(P_{q,\gamma}) = \operatorname{tr}(P_{q,\varphi(z)}) = \begin{cases} q & \text{if} \quad m(\gamma) = 0 \mod q, \\ 0 & \text{if} \quad m(\gamma) \neq 0 \mod q \end{cases}$$
 (2.9)

is independent of z. Define the transfer operator

$$\Phi_{-t}^{k,\ell,q,*}: C^{\infty}(G,\mathcal{E}_{k\ell}^q) \to C^{\infty}(G,\mathcal{E}_{k\ell}^q)$$

by

$$\Phi_{-t}^{k,\ell,q,*}\mathbf{u}(\omega) = \Phi_{t}^{k,\ell,q}[\mathbf{u}(\tilde{\varphi}_{-t}(\omega))], \ \mathbf{u} \in C^{\infty}(G, \mathcal{E}_{k,\ell}^{q})$$

and denote by $\mathbf{P}_{k,\ell,q}$ be the generator of $\Phi^{k,\ell,q,*}$. As above, we obtain the flat trace

$$\operatorname{tr}^{\flat}(\widetilde{\chi}e^{-t\mathbf{P}_{k,\ell,q}}\widetilde{\chi}) = q \sum_{\widetilde{\gamma}, m(\pi_G(\widetilde{\gamma})) \in q\mathbb{N}} \frac{\tau^{\sharp}(\gamma)\operatorname{tr}(\alpha_{\widetilde{\gamma}}^{k,\ell})\delta(t - \tau(\gamma))}{|\operatorname{det}(\operatorname{Id} - \widetilde{P}_{\gamma})|}, \ t > 0.$$
(2.10)

We close this section by the following

Lemma 2.1 (Lemma 3.1, [CP22]). For any periodic orbit $\tilde{\gamma}$ of the flow $\tilde{\varphi}_t$ related to a periodic orbit γ , we have

$$\frac{1}{|\det(\mathrm{Id} - \widetilde{P}_{\gamma})|} \sum_{k=0}^{d-1} \sum_{\ell=0}^{d^2 - d} (-1)^{k+\ell} \operatorname{tr}(\alpha_{\tilde{\gamma}}^{k,\ell}) = |\det(\mathrm{Id} - P_{\gamma})|^{-1/2}.$$

3. Local trace formula

In this section we apply the results of [DG16] and [JT23, §6.1] for vector bundles. For simplicity we will use the notations $\mathcal{E}_{k,\ell} = \mathcal{E}_{k,\ell}^1$, $\mathbf{P}_{k,\ell} = \mathbf{P}_{k,\ell,1}$, etc. For $\widetilde{\chi} \in C_c^{\infty}(\widetilde{V}_u)$ such that $\widetilde{\chi} \equiv 1$ near \widetilde{K}_u , by [DG16] and [JT23, §6.1] we conclude that for any integer $q \in \mathbb{N}$

$$\widetilde{\chi}(-i\mathbf{P}_{k,\ell,q}+s)^{-1}\widetilde{\chi}$$

has a meromorphic continuation to \mathbb{C} . Denote by $\operatorname{Res}(-i\mathbf{P}_{k,\ell,q})$ the set of the poles of this continuation. Then for any constant $\beta > 0$ it was proved in [JT23, (6.3)] that we have the upper bound

$$\sharp \operatorname{Res} (-i\mathbf{P}_{k,\ell,q}) \cap \{\lambda \in \mathbb{C}, |\operatorname{Re} \lambda - E| \le 1, \operatorname{Im} \lambda \ge -\beta\} = \mathcal{O}(E^{d^2 + d - 1}).$$
(3.1)

In particular, there exists C > 0 depending of β such that

$$\sharp \operatorname{Res} (-i\mathbf{P}_{k,\ell,q}) \cap \{\lambda \in \mathbb{C}, |\lambda| \leq E, \operatorname{Im} \lambda \geq -\beta\} \leq CE^{d^2+d} + C.$$

Notice that the power d^2+d-1 comes from dim G. Next for $\operatorname{Res}(-i\mathbf{P}_{k,\ell,q})$ we obtain as in [JT23] the following local trace formula.

Theorem 3.1 (Theorem 1.5 and (6.5), [JT23]). For every A > 0 and any $q \in \mathbb{N}$ there exists a distribution $F_A^{k,\ell,q} \in \mathcal{S}'(\mathbb{R})$ supported in $(0,\infty)$ such that

$$\sum_{\mu \in \text{Res } (-i\mathbf{P}_{k,\ell,q}), \text{Im } \mu > -A} e^{-i\mu t} + F_A^{k,\ell,q}(t)$$

$$= q \sum_{\tilde{\gamma}, m(\gamma) \in q\mathbb{N}} \frac{\tau^{\sharp}(\gamma) \operatorname{tr}(\alpha_{\tilde{\gamma}}^{k,\ell}) \delta(t - \tau(\gamma))}{|\det(\operatorname{Id} - \widetilde{P}_{\gamma})|}, \ t > 0.$$
(3.2_{k,\ell,q})

Moreover for any $\epsilon > 0$ the Fourier-Laplace transform $\hat{F}_A^{k,\ell,q}(\lambda)$ of $F_A^{k,\ell,q}(t)$ is holomorphic for $\operatorname{Im} \lambda < A - \epsilon$ and we have the estimate

$$|\hat{F}_A^{k,\ell,q}(\lambda)| = \mathcal{O}_{A,\epsilon,k,\ell,q} (1+|\lambda|)^{2d^2+2d-1+\epsilon}, \text{ Im } \lambda < A - \epsilon.$$

$$(3.3)$$

$$Here \ \gamma = \pi_G(\widetilde{\gamma}).$$

As it was mentioned in [JT23, Section 6], the proof in [JT23, Section 4] with minor modifications works in the case of vector bundles. Combining the above result with Lemma 2.1, we obtain

Theorem 3.2. For every A > 0 and any $\epsilon > 0$ there exists a distribution $F_{A,q} \in \mathcal{S}'(\mathbb{R})$ supported in $(0,\infty)$ with Fourier-Laplace transform $\hat{F}_{A,q}(\lambda)$ holomorphric for $\text{Im } \lambda < A - \epsilon$ such that

$$\sum_{k=0}^{d} \sum_{\ell=0}^{d^{2}-d} \sum_{\mu \in \text{Res } (-i\mathbf{P}_{k,\ell,q}), \text{Im } \mu > -A} (-1)^{k+\ell} e^{-i\mu t} + F_{A,q}(t)$$

$$= q \sum_{\gamma, m(\gamma) \in q\mathbb{N}} \frac{\tau^{\sharp}(\gamma)\delta(t - \tau(\gamma))}{|\det(\text{Id} - P_{\gamma})|^{1/2}}, \ t > 0, \tag{3.4}_{q})$$

where $\hat{F}_{A,q}(\lambda) = \sum_{k=0}^{d} \sum_{\ell=0}^{d^2-d} (-1)^{k+\ell} \hat{F}_A^{k,\ell,q}(\lambda)$ satisfies the estimate (3.3).

Choosing q=1, we obtain a local trace formula for Neumann dynamical zeta function $\eta_N(s)$, introduced in Section 1. For the Dirichlet dynamical zeta function $\eta_D(s)$ given in Section 1 we use the representation (1.3) and applying (3.4)_q with q=1,2, we obtain the local trace formula

$$\sum_{k=0}^{d} \sum_{\ell=0}^{d^{2}-d} \sum_{\mu \in \text{Res } (-i\mathbf{P}_{k,\ell,2}), \text{Im } \mu > -A} (-1)^{k+\ell} e^{-i\mu t}$$

$$-\sum_{k=0}^{d} \sum_{\ell=0}^{d^{2}-d} \sum_{\mu \in \text{Res } (-i\mathbf{P}_{k,\ell,1}), \text{Im } \mu > -A} (-1)^{k+\ell} e^{-i\mu t} + F_{A,2}(t) - F_{A,1}(t)$$

$$= \sum_{\gamma} \frac{(-1)^{m(\gamma)} \tau^{\sharp}(\gamma) \delta(t - \tau(\gamma))}{|\det(\text{Id} - P_{\gamma})|^{1/2}}, \ t > 0. \quad (3.5)$$

Some resonances $\mu \in \text{Res }(-i\mathbf{P}_{k,\ell,q}), \ k+\ell \text{ odd}, q=1,2$ may cancel with some resonances $\nu \in \text{Res }(-i\mathbf{P}_{k,\ell,q}), \ k+\ell \text{ even}, q=1,2$ and appriori it is not clear if the meromorphic continuation of dynamical zeta functions $\eta_N(s)$ and $\eta_D(s)$ have infinite number poles. Notice that all poles are simples and the cancellations in $(3.4)_q$ could appear for terms with coefficients + and - related to $k+\ell$ even and $k+\ell$ odd, respectively. On the other hand, in (3.5) we have more possibilities for cancellations of poles.

4. Strip with infinite number poles

Proof of Theorem 1.1. We will prove Theorem 1.1 for η_D since the argument for η_q is completely similar and simpler. After cancelation all poles μ at the left hand side of (3.5) satisfy $\operatorname{Im} \mu \leq \alpha = \max\{0, a_1\}$. To avoid confusion, in the following we denote by $\widetilde{\mu}$ the poles μ in (3.5) which are not cancelled. Assume that for some $0 < \delta < 1$ and $0 \leq k \leq q$, $0 \leq \ell \leq q^2 - q$, q = 1, 2 we have estimates

$$N_{A,k,\ell,q}(r) = \sharp \{ \widetilde{\mu} \in \text{Res} \left(-i \mathbf{P}_{k,\ell,q} \right) : |\widetilde{\mu}| \le r, -A < \text{Im} \, \widetilde{\mu} \le \alpha \}$$

$$< P(A, k, \ell, q, \delta) r^{\delta}. \quad (4.1)$$

We follow the argument in [JZ17, Section 5] and [CP22, Appendix B] with some modifications. Let $\rho \in C_0^{\infty}(\mathbb{R}; \mathbb{R}_+)$ be an even function with supp $\rho \subset [-1, 1]$ such that

$$\rho(t) > 1 \quad \text{if} \quad |t| \leqslant 1/2,$$

and

$$\hat{\rho}(-\lambda) = \int e^{it\lambda} \rho(t) dt \geqslant 0, \quad k \in \mathbb{R}.$$

Let $(\ell_j)_{j\in\mathbb{N}}$ and $(m_j)_{j\in\mathbb{N}}$ be sequences of positive numbers such that $\ell_j \geqslant d_0 = \min_{k\neq m} \operatorname{dist}(D_k, D_m) > 0, \ m_j \geqslant \max\{1, \frac{1}{d_0}\}$ and let $\ell_j \to \infty, \ m_j \to \infty \text{ as } j \to \infty.$ Set

$$\rho_j(t) = \rho(m_j(t - \ell_j)), \quad t \in \mathbb{R},$$

and introduce the distribution $\mathcal{F}_{\mathrm{D}} \in \mathcal{S}'(\mathbb{R}^+)$ by

$$\mathcal{F}_{D}(t) = \sum_{\gamma \in \mathcal{P}} \frac{(-1)^{m(\gamma)} \tau^{\sharp}(\gamma) \delta(t - \tau(\gamma))}{|\det(I - P_{\gamma})|^{1/2}}.$$
 (4.2)

We have the following proposition established by Ikawa.

Proposition 4.1 (Prop. 2.3, [Ika90a]). Suppose that the function $s \mapsto \eta_{D}(s)$ cannot be prolonged as an entire function of s. Then there exists $\alpha_{0} > 0$ such that for any $\beta > \alpha_{0}$ we can find sequences $(\ell_{j}), (m_{j})$ with $\ell_{j} \to \infty$ as $j \to \infty$ such that for all $j \geq 0$ one has

$$e^{\beta \ell_j} \leqslant m_j \leqslant e^{2\beta \ell_j} \quad and \quad |\langle \mathcal{F}_D, \rho_j \rangle| \geqslant e^{-\alpha_0 \ell_j}.$$

We apply the local trace formula (3.5) to function $\rho_j(t)$. For $-A \leq \text{Im } \zeta \leq \alpha$ we have

$$|\hat{\rho}_j(\zeta)| = m_j^{-1} |\hat{\rho}(m_j^{-1}\zeta)e^{-i\ell_j\zeta}| \le C_N m_j^{-1} e^{\alpha\ell_j + m_j^{-1} \max(\alpha, A)} (1 + |m_j^{-1}\zeta|)^{-N}.$$

Then for q = 1, 2 and $-A \leq \operatorname{Im} \widetilde{\mu} \leq \alpha$ we obtain

$$\Big| \sum_{\operatorname{Im} \widetilde{\mu} > -A, \, \widetilde{\mu} \in \operatorname{Res} \, (-i\mathbf{P}_{k,\ell,q})} \langle e^{-i\widetilde{\mu}t}, \rho_j(t) \rangle \Big|$$

$$\leqslant C_{N,A} m_j^{-1} e^{\alpha \ell_j} \int_0^\infty (1 + m_j^{-1} r)^{-N} dN_{A,k,\ell,q}(r)
= -C_{N,A} m_j^{-1} e^{\alpha \ell_j} \int_0^\infty \frac{d}{dr} \Big((1 + m_j^{-1} r)^{-N} \Big) N_{A,k,l,q}(r) dr
\leqslant B_{N,A} P(A, k, \ell, q, \delta) m_j^{-(1-\delta)} e^{\alpha \ell_j} \int_0^\infty (1 + y)^{-N-1} y^{\delta} dy
= A_N P(A, k, \ell, q, \delta) m_j^{-(1-\delta)} e^{\alpha \ell_j} \le D_{A,k,\ell,q,\delta} e^{(-\beta(1-\delta) + \alpha)\ell_j}.$$

Next, applying (3.3), we have

$$\langle F_{A,q}, \rho_j \rangle = \int_{\mathbb{R}} \hat{F}_{A,q}(-\zeta) \hat{\rho}_j(\zeta) d\zeta = \int_{\mathbb{R} + i(\epsilon - A)} \hat{F}_{A,q}(-\zeta) \hat{\rho}_j(\zeta) d\zeta$$

and choosing $M = 2d^2 + 2d + 1$, we deduce

$$\begin{split} |\langle F_{A,q}, \rho_j \rangle| &\leq C_{M,A,q} m_j^{-1} e^{(\epsilon - A)\ell_j} e^{m_j^{-1} \max\{A - \epsilon, \alpha\}} \\ &\qquad \times \int (1 + |\zeta|)^{2d^2 + 2d - 1 + \epsilon} (1 + |m_j^{-1}\zeta|)^{-M} d\zeta \\ &\leq D_{M,A,q} e^{(\epsilon - A)\ell_j} m_j^{2d^2 + 2d - 1 + \epsilon} \leq D_{M,A,q} e^{(\epsilon - A)\ell_j} e^{2(2d^2 + 2d - 1 + \epsilon)\beta\ell_j}. \end{split}$$

According to [CP22, Theorem 1.3] for obstacles with real analytic boundary, the function η_D is not entire and we may apply Proposition 4.1. Taking together the above estimates and summing for $0 \le k \le d$, $0 \le \ell \le d^2 - d$ and q = 1, 2, we get

$$D_A e^{(-\beta(1-\delta)+\alpha)\ell_j} + E_A e^{(\epsilon-A)\ell_j} e^{2(2d^2+2d-1+\epsilon)\beta\ell_j} \ge e^{-\alpha_0\ell_j}.$$

Here the constants D_A and E_A depend of A but they are independent of ℓ_j . We choose $\beta > \frac{\alpha_0 + \alpha}{1 - \delta}$. We fix β and $0 < \epsilon < 1$ and choose

$$A > 2(2d^2 + 2d - 1 + \epsilon)\beta + \epsilon + \alpha_0.$$

Fixing A, for $\ell_j \to \infty$ we obtain a contradiction. This completes the proof of Theorem 1.1 for η_D .

To deal with Res η_q , $q \geq 2$, we choose a periodic ray γ_0 with q reflections, $\ell_j = j\tau^{\sharp}(\gamma_0)$, $m_j = e^{\beta \ell_j}$ and apply the lower bound

$$\left| \left\langle \sum_{\gamma, \, m(\gamma) \in q\mathbb{N}} \frac{\tau^{\sharp}(\gamma)\delta(t - \tau(\gamma))}{|\det(\operatorname{Id} - P_{\gamma})|^{1/2}}, \rho_{j} \right\rangle \right| \ge ce^{-c_{0}\ell_{j}}, \, \forall j \ge 0$$

with c > 0, $c_0 > 0$ independent of ℓ_j . For q = 1 we choose $\ell_j = j\tau^{\sharp}(\gamma)$, $m_j = e^{\beta\ell_j}$ with some periodic ray γ and obtain the above estimate. Repeating the argument for η_D , we prove (1.4).

Proof of Theorem 1.2. We follow the approach of F. Naud in [JZ17, Appendix A]. Let $0 \le \rho \in C_0^{\infty}(-1,1)$ be the function introduced above. For $\xi \in \mathbb{R}$ and $t > \max\{d_0, 1\}$ introduce the function

$$\psi_{t,\xi}(s) = e^{i\xi t} \rho(s-t), \ \xi \in \mathbb{R}.$$

We apply the trace formula $(3.4)_1$ to $\psi_{t,\xi}$. As above denote by $\widetilde{\mu}$ the poles which are not cancelled in the left hand side of $(3.4)_1$. Assume that for $0 \le k \le d$ and $0 \le \ell \le d^2 - d$ we have

$$\sharp \{ \widetilde{\mu} \in \text{Res} (-i\mathbf{P}_{k,l}) : -A - \epsilon \le \text{Im} \, \widetilde{\mu} \le \alpha \} = P(A, k, \ell, \epsilon) < \infty. \tag{4.3}$$

First, we have

$$|\hat{\psi}_{t,\xi}(\zeta)| \le C_N e^{t \operatorname{Im} \zeta + |\operatorname{Im} \zeta|} (1 + |\operatorname{Re} \zeta - \xi|)^{-N}.$$

For $-A \leq \operatorname{Im} \widetilde{\mu} \leq \alpha$ and N=1 the sum of terms involving poles $\widetilde{\mu}$ in $(3.4)_1$ can be bounded by $\frac{C_1 e^{\alpha t}}{1+|\xi|}$ with constant $C_1 > 0$ depending of $P(A, k, \ell, \epsilon)$ and $\exp(\max\{A, \alpha\})$. Second, by using (3.3) for $\widehat{F}_{A,1}$, one deduces

$$|\langle F_{A,1}, \psi_{t,\xi} \rangle| \le C_2 e^{(\epsilon - A)(t-1)} (1 + |\xi|)^{2d^2 + 2d - 1 + \epsilon}$$

Setting

$$S(t,\xi) = \sum_{\gamma} \frac{e^{i\xi\tau(\gamma)}\tau^{\sharp}(\gamma)\rho(\tau(\gamma) - t)}{|\det(\operatorname{Id} - P_{\gamma})|^{1/2}},$$

we get

$$|S(t,\xi)| \le \frac{C_1 e^{\alpha t}}{1+|\xi|} + C_A e^{-(A-\epsilon)t} (1+|\xi|)^{2d^2+2d-1+\epsilon}.$$

Now consider the Gaussian weight

$$G(t,\sigma) = \sigma^{1/2} \int_{\mathbb{R}} |S(t,\xi)|^2 e^{-\sigma\xi^2/2} d\xi, \ 0 < \sigma < 1.$$

The estimate for $|S(t,\xi)|$ yields

$$|S(t,\xi)|^2 \le \frac{2C_1^2 e^{2\alpha t}}{(1+|\xi|)^2} + 2C_A^2 e^{-2(A-\epsilon)t} (1+|\xi|)^{2(2d^2+2d-1+\epsilon)}$$

and

$$G(t,\sigma) \le C_1' \sigma^{1/2} e^{2\alpha t} + C_A' \sigma^{-(2d^2 + 2d - 1 + \epsilon)} e^{-2(A - \epsilon)t}.$$
 (4.4)

On the other hand, taking into account only the terms with $\tau(\gamma) = \tau(\gamma')$, we get

$$G(t,\sigma) = \sqrt{2\pi} \sum_{\gamma} \sum_{\gamma'} \frac{\tau^{\sharp}(\gamma)\tau^{\sharp}(\gamma')e^{-(\tau(\gamma)-\tau(\gamma'))^{2}/2\sigma}\rho(\tau(\gamma)-t)\rho(\tau(\gamma')-t)}{|\det(\operatorname{Id}-P_{\gamma})|^{1/2}|\det(\operatorname{Id}-P_{\gamma'})|^{1/2}}$$

$$\geq c \sum_{t-1/2 \leq \tau(\gamma) \leq t+1/2} \tau^{\sharp}(\gamma)|\det(\operatorname{Id}-P_{\gamma})|^{-1}$$

$$(4.5)$$

with c > 0 independent of t and σ .

Set $\tau(\gamma) = T_{\gamma}$, $\tau^{\sharp}(\gamma) = T_{\gamma}^{\sharp}$, $a_{\gamma} = \frac{T_{\gamma}^{\sharp}}{|\det(\operatorname{Id} - P_{\gamma})|}$. Recall that b_1 is the abscissa of convergence of Dirichlet series (1.5) with q = 1.

Case 1. $b_1 < 0$.

Let the lengths of the periodic rays be arranged as follows

$$T_1 \leq T_2 \leq \ldots \leq T_n \leq \ldots$$

It is well known (see for instance, [Cot17]) that

$$b_1 = \limsup_{n \to \infty} \frac{\log |\sum_{T_n \le T_\gamma} a_\gamma|}{T_n}.$$

We fix a small $\epsilon>0$ so that $-\delta=b_1-3\epsilon/2<0$. There exists an increasing sequence $n_1< n_2<\ldots< n_m<\ldots$ such that $\lim n_j=+\infty$ and

$$\frac{\log \left| \sum_{T_{n_j} \le T_{\gamma}} a_{\gamma} \right|}{T_{n_j}} \ge b_1 - \epsilon. \tag{4.6}$$

Choose m large so that

$$1 > e^{-\delta T_{n_j}} + 2e^{-\frac{\epsilon}{2}T_{n_j}}, \ \frac{1}{T_{n_j}} > e^{-\frac{\epsilon}{2}T_{n_j}} \text{ for } j \ge m.$$

Set $q_1 = T_{n_m}$ and write

$$\sum_{q_1 \le T_\gamma} a_\gamma = \sum_{k=1}^\infty \sum_{kq_1 \le T_\gamma < (k+1)q_1} a_\gamma.$$

Assume that we have the estimates

$$\sum_{kq_1 \le T_{\gamma} < (k+1)q_1} a_{\gamma} \le e^{-\delta kq_1}, \ \forall k \ge 1.$$
 (4.7)

Then

$$\sum_{q_1 \le T_2} a_{\gamma} \le e^{-\delta q_1} \sum_{j=0}^{\infty} e^{-j\delta q_1} = e^{-\delta q_1} \frac{1}{1 - e^{-\delta q_1}} < \frac{1}{2} e^{(-\delta + \epsilon/2)q_1}.$$

Since $-\delta + \epsilon/2 = b_1 - \epsilon$, we obtain a contradiction with (4.6) for T_{n_m} . Consequently, there exists at least one $k_1 \geq 1$ such that

$$\sum_{k_1 q_1 \le T_{\gamma} < (k_1 + 1)q_1} a_{\gamma} > e^{-\delta k_1 q_1}. \tag{4.8}$$

The series $\sum_{T_{\gamma} \geq (k_1+1)q_1} a_{\gamma} e^{-\lambda T_{\gamma}}$ has the same abscissa of convergence b_1 . We repeat the procedure choosing $q_2 > (k_1+1)q_1$, and obtain the existence of $k_2 \geq 1$ such that

$$\sum_{k_2 q_2 \le T_{\gamma} < (k_2 + 1)q_2} a_{\gamma} > e^{-\delta k_2 q_2}. \tag{4.9}$$

By iteration we find two sequences $\{q_i\}$, $\{k_i\}$ such that

$$q_{j+1} > (k_j + 1)q_j, \ k_j \ge 1,$$

and a sequence of disjoint intervals

$$[k_i q_i, (k_i + 1)q_i], j = 1, 2, ...$$

so that

$$\sum_{k_j q_j \le T_{\gamma} \le (k_j + 1)q_j} a_{\gamma} > e^{-\delta k_j q_j}. \tag{4.10}$$

The periods q_j may change applying the above procedure but for simplicity we use the same notation.

Next, suppose that

$$\sum_{k_j q_j + p \le T_{\gamma} \le k_j q_j + p + 1} a_{\gamma} < e^{-\delta k_j q_j} / q_j, \ p = 0, 1, ..., q_j - 1.$$

By using triangle inequality, we obtain a contradiction with (4.10). Thus for some $0 \le p_j \le q_j - 1$ we have

$$\sum_{k_j q_j + p_j \le T_\gamma \le k_j q_j + p_j + 1} a_\gamma \ge e^{-\delta k_j q_j} / q_j > e^{(-\delta - \epsilon/2)k_j q_j}.$$

Choosing $t_j = k_j q_j + p_j + 1/2$, we deduce

$$\sum_{t_j-1/2 \le T_\gamma \le t_j+1/2} a_\gamma \ge e^{(b_1-2\epsilon)t_j}.$$

Therefore from (4.4) and (4.5) with $t = t_i$ we obtain

$$c_1 \sigma^{1/2} e^{2\alpha t_j} + c_2 \sigma^{-(2d^2 + 2d - 1 + \epsilon)} e^{-2(A - \epsilon)t_j} > e^{(b_1 - 2\epsilon)t_j}$$
(4.11)

with constants $c_1, c_2 > 0$ independent of t_i . Now choose

$$\sigma = c_1^{-2} e^{2(b_1 - 3\epsilon - 2\alpha)t_j} < 1.$$

Since

$$b_1 - 3\epsilon - (b_1 - 2\epsilon) + 2\epsilon = \epsilon,$$

we have

$$e^{-\epsilon t_j} + c_3 e^{-2(2d^2 + 2d - 1/2 + \epsilon)(b_1 - 3\epsilon - 2\alpha)t_j} e^{-2(A - (1/2)\epsilon)t_j} \ge 1.$$

Taking

$$A = -(2d^2 + 2d - 1/2)(b_1 - 2\alpha) + 3\epsilon(2d^2 + 2d - \frac{b_1 - 2\alpha}{3} + \epsilon)$$

and letting $t_j \to +\infty$, we obtain a contradiction. Consequently, for some $0 \le k_0 \le 0$, $0 \le \ell_0 \le d^2 - d$, setting $\tilde{\epsilon} = 3\epsilon (2d^2 + 2d - \frac{b_1 - 2\alpha}{3} + \epsilon) + \epsilon$, we have

$$\sharp \{ \widetilde{\mu} \in \text{Res} (-i\mathbf{P}_{k_0, l_0}) : \text{Im } \widetilde{\mu} > (2d^2 + 2d - 1/2)(b_1 - 2\alpha) - \widetilde{\epsilon} \} = \infty.$$

This implies (1.6) with ϵ replaced by $\tilde{\epsilon}$, observing that the poles $\widetilde{\mu} \in \text{Res}(-i\mathbf{P}_{k_0,\ell_0})$ coincide with the poles $\widetilde{\lambda}$ of the meromorphic continuation of $\eta_1(i\lambda)$.

Case 2. $b_1 > 0$.

For b_1 we have the representation

$$b_1 = \limsup_{n \to \infty} \frac{\log |\sum_{T_{\gamma} \le T_n} a_{\gamma}|}{T_n}.$$

We fix a small $\epsilon > 0$ so that $b_1 - 2\epsilon > 0$. For every small $\epsilon_1 > 0$ the estimates for the numbers of periodic rays in Section 1 imply

$$e^{(h-\epsilon_1)T_n} \le n \le e^{(h+\epsilon_1)T_n}, T_n \ge C_{\epsilon_1}. \tag{4.12}$$

We choose $\epsilon_1 = \frac{h}{4b_1}\epsilon$ and arrange

$$\frac{h - \epsilon_1}{h + \epsilon_1} (b_1 - \frac{3}{2}\epsilon) = (b_1 - \frac{3}{2}\epsilon) - \frac{2\epsilon_1}{h + \epsilon_1} (b_1 - \frac{3}{2}\epsilon)
> (b_1 - \frac{3}{2}\epsilon) - \frac{2\epsilon_1 b_1}{h} = b_1 - 2\epsilon.$$
(4.13)

There exists an increasing sequence $n_1 < n_2 < ... < n_m < ...$ such that $\lim n_j = +\infty$ and

$$\frac{\log \left| \sum_{T_{\gamma} \le T_{n_j}} a_{\gamma} \right|}{T_{n_i}} \ge b_1 - \epsilon. \tag{4.14}$$

Set $\log n_1 = p_1$ for T_{n_1} large using (4.12), we get

$$\sum_{T_{\gamma} \leq T_{n_1}} a_{\gamma} \leq \sum_{k=0}^{\left[\frac{p_1}{h-\epsilon_1}\right]} \sum_{k < T_{\gamma} \leq (k+1)} a_{\gamma}.$$

For simplicity of the notation set $d_1 = b_1 - \frac{3}{2}\epsilon > 0$. Assume that for $k = 0, ..., \left[\frac{p_1}{h-\epsilon_1}\right]$ we have

$$\sum_{k < T_{\gamma} \le (k+1)} a_{\gamma} \le e^{\frac{h - \epsilon_1}{h + \epsilon_1} d_1 k}.$$

This implies

$$\sum_{T_{\gamma} \leq T_{n_1}} a_{\gamma} \leq \sum_{k=0}^{\left[\frac{p_1}{h-\epsilon_1}\right]} e^{\frac{h-\epsilon_1}{h+\epsilon_1}d_1k} = \frac{e^{\frac{h-\epsilon_1}{h+\epsilon_1}d_1(\left[\frac{p_1}{h-\epsilon_1}\right]+1)}-1}{e^{\frac{h-\epsilon_1}{h+\epsilon_1}d_1}-1}.$$

Applying the inequality $e^x - 1 \ge x$ for $x \ge 0$ and exploiting (4.12), we deduce

$$\sum_{T_{\gamma} \le T_{n_1}} a_{\gamma} < \frac{e^{\frac{h-\epsilon_1}{h+\epsilon_1} d_1(\left[\frac{p_1}{h-\epsilon_1}\right]+1)}}{b_1 - 2\epsilon} < \frac{e^{d_1}}{b_1 - 2\epsilon} e^{\frac{\log n_1}{h+\epsilon_1} d_1}$$

$$\leq \frac{1}{2} e^{(d_1 + \epsilon/2)T_{n_1}} = \frac{1}{2} e^{(b_1 - \epsilon)T_{n_1}}$$

for large T_{n_1} depending of $\frac{e^{d_1}}{b_1-2\epsilon}$. We obtain a contradiction with (4.14). Taking into account (4.13), for some $0 \le k_1 \le \left[\frac{p_1}{h-\epsilon_1}\right]$ we have

$$\sum_{k_1 < T_{\gamma} \le k_1 + 1} a_{\gamma} \ge e^{(b_1 - 2\epsilon)k_1}.$$

Following this procedure, we construct a sequence of integers $\{k_j\}$, $k_{j+1} > k_j + 2$ satisfying

$$\sum_{k_j \le T_\gamma \le k_j + 1} a_\gamma \ge e^{(b_1 - 2\epsilon)k_j}.$$

We choose $t_j = k_j + 1/2$ and arrange

$$\sum_{t_j - 1/2 \le T_\gamma \le t_j + 1/2} a_\gamma \ge e^{(b_1 - 2\epsilon)t_j}.$$

Finally, we obtain (4.11) and a repetition of the argument in Case 1 implies (1.6).

Case 3. $b_1 = 0$.

For small u > 0 consider the Dirichlet series

$$\eta_u(s) = \sum_{\gamma} \frac{T_{\gamma}^{\sharp} e^{-(s+u)T_{\gamma}}}{|\det(\operatorname{Id} - P_{\gamma})|} = \sum_{\gamma} a_{\gamma} e^{-uT_{\gamma}} e^{-sT_{\gamma}}.$$

This series has abscissa de convergence -u < 0 and we may apply the results of the Case 1. For a suitable sequence $t_j \to \infty$ depending of -u we obtain the estimates

$$e^{-u(t_j-1/2)} \sum_{t_j-1/2 \le T_\gamma \le t_j+1/2} a_\gamma \ge \sum_{t_j-1/2 \le T_\gamma \le t_j+1/2} a_\gamma e^{-uT_\gamma} \ge e^{(-u-2\epsilon)t_j}.$$

Consequently,

$$\sum_{t_j - 1/2 \le T_\gamma \le t_j + 1/2} a_\gamma \ge e^{-u/2} e^{-2\epsilon t_j} > e^{(-u/2 - 2\epsilon)t_j}.$$

These lower bounds are the estimates (4.11) with b_1 replaced by -u/2. The argument in the Case 1 implies

$$\sharp \{\mu_j \in \text{Res}\eta_1 : \text{Re}\,\mu_j > (2d^2 + 2d - 1/2)(-2\alpha) - (\epsilon + (2d^2 + 2d - 1/2)u/2)\} = \infty.$$

For small u we arrange $(2d^2 + 2d - 1/2)u/2 < \epsilon$ and since ϵ is arbitrary, we obtain (1.6) with $b_1 = 0$. This completes the proof of Theorem 1.2.

APPENDIX

In this Appendix we prove Proposition 1.2. First,

$$\det(\operatorname{Id} - P_{\gamma}) = \det(\operatorname{Id} - D_x \varphi_{T_{\gamma}}|_{E_s(x)}) \det(\operatorname{Id} - D_x \varphi_{T_{\gamma}}|_{E_s(x)})$$

= $\det(D_x \varphi_{T_\gamma}|_{E_u(x)}) \det(\operatorname{Id} -D_x \varphi_{T_\gamma}|_{E_s(x)}) \det(D_x \varphi_{-T_\gamma}|_{E_u(x)} - \operatorname{Id}), x \in \gamma.$ Consequently,

$$|\det(\operatorname{Id} - P_{\gamma})|^{-1} = |\det D_x \varphi_{T_{\gamma}}|_{E_u(x)}|^{-1}$$

$$\times |\det(\operatorname{Id} - D_x \varphi_{T_{\gamma}}|_{E_s(x)})|^{-1} |\det(\operatorname{Id} - D_x \varphi_{-T_{\gamma}}|_{E_u(x)})|^{-1}.$$

For large T_{γ} we have

$$||D_x \varphi_{T_\gamma}|_{E_s(x)}|| \le Ce^{-\delta T_\gamma}, ||D_x \varphi_{-T_\gamma}|_{E_u(x)}|| \le Ce^{-\delta T_\gamma}, \delta > 0, \forall T_\gamma$$

with constants $C>0,\ \delta>0$ independent of T_{γ} since the flow φ_t is uniformly hyperbolic (see [CP22, Appendix A]). Thus for large T_{γ} we obtain

$$|c_1| \det D_x \varphi_{T_\gamma}|_{E_u(x)}|^{-1} \le |\det(\operatorname{Id} - P_\gamma)|^{-1} \le C_1 |\det D_x \varphi_{T_\gamma}|_{E_u(x)}|^{-1}$$
(A.1)

with $0 < c_1 < C_1$ independent of T_{γ} . We have

$$\det D_x \varphi_{T_\gamma}|_{E_u(x)} = e^{d_\gamma}, \ x \in \gamma$$

with

$$d_{\gamma} = \log(\lambda_{1,\gamma}...\lambda_{d-1,\gamma}) > 0,$$

 $\lambda_{j,\gamma}$ being the eigenvalues of $D_x \varphi_{T_{\gamma}}|_{E_u(x)}$ with modulus greater than 1. The above estimate shows that the abscissa of convergence of the series

$$\sum_{\gamma} T_{\gamma}^{\sharp} e^{-sT_{\gamma} + \delta_{\gamma}}, \ \delta_{\gamma} = -d_{\gamma}, \ \operatorname{Re} s \gg 1$$

coincides with b_1 .

Our purpose is to express b_1 by some dynamical characteristics related to symbolic dynamics for several disjoint strictly convex obstacles. To do this, we recall some well known results and we refer to [Ika88b], [Ika88a], [Ika90a], [PP90] for more details. Let $A(i,j)_{i,j=1,\dots,r}$ be a $r \times r$ matrix such that

$$A(i,j) = \begin{cases} 1 & \text{if } i \neq j, \\ 0 & \text{if } i = j. \end{cases}$$

Introduce the space

$$\Sigma_A = \{ \xi = \{ \xi_i \}_{i=-\infty}^{\infty}, \ \xi_i \in \{1, ..., r\}, \ A(\xi_i, \xi_{i+1}) = 1, \ \forall i \in \mathbb{Z} \}.$$

$$\Sigma_A^+ = \{ \xi = \{ \xi_i \}_{i=0}^{\infty}, \ \xi_i \in \{1, ..., r\}, \ A(\xi_i, \xi_{j+1}) = 1, \ \forall i \ge 0 \}.$$

Given $0 < \theta < 1$, define a metric d_{θ} on Σ_A by $d_{\theta}(\xi, \eta) = 0$ if $\xi = \eta$ and $d_{\theta}(\xi, \eta) = \theta^k$ if $\xi \neq \eta$ and k is the maximal integer such that $\xi_i = \eta_i$ for |i| < k. Similarly, we define a metric d_{θ}^+ on Σ_A^+ . Following [PP90, Chapter 1], for a function $F : \Sigma_A \to \mathbb{C}$ define

$$\operatorname{var}_{k} F = \sup\{|F(\xi) - F(\eta)| : \xi_{i} = \eta_{i}, |i| < k\}$$

and for $G: \Sigma_A^+ \to \mathbb{C}$ define

$$\operatorname{var}_k G = \sup\{|G(\xi) - G(\eta)| : \xi_i = \eta_i, \ 0 \le i < k\}$$

Let $F_{\theta}(\Sigma_A)$, $F_{\theta}(\Sigma_A^+)$ be the set of Lipschitz functions with respect to metrics d_{θ} , d_{θ}^+ , respectively, with norm

$$|||f|||_{\theta} = ||f||_{\infty} + ||f||_{\theta}, ||f||_{\theta} = \sup_{k>0} \frac{\operatorname{var}_k f}{\theta^k}.$$

Let σ_A be shift on Σ_A and Σ_A^+ given by

$$(\sigma_A \xi)_i = \xi_{i+1}, \ \forall i \in \mathbb{Z}, \ (\sigma_A \xi)_i = \xi_{i+1}, \ \forall i \ge 0,$$

respectively. For every $\xi \in \Sigma_A$ there exists a unique reflecting ray $\gamma(\xi)$ with successive reflections points on ∂D_{j-1} , ∂D_j , ∂D_{j+1} , ..., where the order of reflections is determined by the sequence (ξ) (see [Ika88a]). If $(P_j(\xi))_{j=-\infty}^{\infty}$ are the reflexion points of $\gamma(\xi)$, we define the function

$$f(\xi) = ||P_0(\xi) - P_1(\xi)||.$$

It was proved in [Ika88a, Section 3], [PS10, Section 3] that one can construct a sequence of phase functions $\{\varphi_{\xi,j}(x)\}_{j=-\infty}^{\infty}$, such that for each j the phase $\varphi_{\xi,j}$ is smooth in a neighborhood $\mathcal{U}_{\xi,j}$ of the segment

 $[P_j(\xi), P_{j+1}(\xi)]$ in $\mathbb{R}^d \setminus \mathring{D}$ and

(i) $\|\nabla \varphi_{\xi,j}(x)\| = 1$ on $\mathcal{U}_{\xi,j}$,

(ii)
$$\nabla \varphi_{\xi,j}(P_j(\xi)) = \frac{P_{j+1}(\xi) - P_j(\xi)}{\|P_{j+1}(\xi) - P_j(\xi)\|},$$

(iii)
$$\varphi_{\xi,j} = \varphi_{\xi,j+1}$$
 on $\partial D_{j+1} \cap \mathcal{U}_{\xi,j} \cap \mathcal{U}_{\xi,j+1}$,

(iv) for each $x \in \mathcal{U}_{\xi,j}$ the surface $C_{\xi,j}(x) = \{y \in \mathcal{U}_{\xi,j} : \varphi_{\xi,j}(x) = \varphi_{\xi,j}(y)\}$ is strictly convex with respect to its normal fiels $\nabla \varphi_{\xi,j}$.

Denote by $\kappa_j(\xi)$, j = 1, ..., d-1, the principal curvatures at $P_0(\xi)$ of $C_{\xi,0}(x)$ and introduce

$$g(\xi) = -\log \prod_{j=1}^{d-1} (1 + f(\xi)\kappa_j(\xi)).$$

Then

$$\prod_{j=1}^{d-1} \lambda_{j,\gamma(\xi)} = \prod_{k=1}^{m(\gamma(\xi))} \prod_{j=1}^{d-1} (1 + f(\sigma_A^k \xi) \kappa_j(\sigma_A^k \xi)).$$

It follows form the exponential instability of the billiard ball map (see [Ika88a], [Sto99]) that $f(\xi), g(\xi)$ become functions in $F_{\theta}(\Sigma_A)$ with $0 < \theta < 1$ depending on the geometry of D. We define

$$S_n h(\xi) = h(\xi) + h(\sigma_A \xi) + \dots + h(\sigma_A^{n-1} \xi)$$

and for a periodic ray $\gamma(\xi)$ we obtain

$$T_{\gamma(\xi)} = S_{m(\gamma(\xi))} f(\xi), \ \delta_{\gamma(\xi)} = S_{m(\gamma(\xi))} g(\xi).$$

Consider the zeta function

$$Z(s) = \left(\sum_{n=1}^{\infty} \frac{1}{n} \sum_{\sigma_A^n \xi = \xi} e^{S_n(-sf(\xi) + g(\xi))}\right), \text{ Re } s \gg 1$$

and observe that

$$-\frac{d}{ds}Z(s) = \sum_{\gamma} T_{\gamma}^{\sharp} e^{-sT_{\gamma} + \delta_{\gamma}}.$$

Next, it is well known (see for instance [PP90, Chapter 1]) that given $h \in F_{\theta}(\Sigma_A)$, there exist functions $\tilde{h}, \chi \in F_{\theta^{1/2}}(\Sigma_A)$ such that

$$h(\xi) = \tilde{h}(\xi) + \chi(\sigma_A \xi) - \chi(\xi)$$

and $\tilde{h}(\xi) \in F_{\theta^{1/2}}(\Sigma_A^+)$ depends only on the coordinates $(\xi_0, \xi_1, ...)$. We denote this property by $h \sim \tilde{h}$. Choose $\tilde{f} \sim f$, $\tilde{g} \sim g$ with $\tilde{f}, \tilde{g} \in$

 $F_{\theta^{1/2}}(\Sigma_A^+)$ and write

$$Z(s) = \left(\sum_{n=1}^{\infty} \frac{1}{n} \sum_{(\sigma_A^+)^n \xi = \xi} e^{S_n(-s\tilde{f}(\xi) + \tilde{g}(\xi))}\right).$$

The pressure P(F) of a function $F \in C(\Sigma_A)$ is defined by

$$P(F) = \sup_{\nu} \Big(h(\nu, \sigma_A) + \int_{\Sigma_A} F d\nu \Big),$$

where $h(\nu, \sigma_A)$ is the measure entropy of σ_A with respect to ν and the supremum is taken over all probability measures ν on Σ_A invariant with respect to σ_A .

Following [PP90, Chapter 6], consider the suspended flow $\sigma_t^f(\xi, s) = (\xi, s + t)$ on the space

$$\Sigma_A^f = \{ (\xi, s) : \xi \in \Sigma_A, \ 0 \le s \le f(\xi) \}$$

with identification $(\xi, f(\xi)) \sim (\sigma_A(\xi), 0)$. For a function $G \in C(\Sigma_A^f)$ define the pressure

$$P(G) = \sup_{\nu_f} \{ h(\nu_f, \sigma_t^f) + \int_{\Sigma_A^f} G d\nu_f \}, \tag{A.2}$$

where $h(\nu_f, \sigma_t^f)$ is the measure entropy and the supremum is taken over all probability measures ν_f on Σ_A^f invariant with respect to σ_t^f . The suspended flow σ_t^f is weakly mixing, if there are not $t \in \mathbb{R} \setminus \{0\}$ with the property

$$\frac{t}{2\pi}f(\xi) \sim M(\xi),$$

where $M(\xi) \in C(\Sigma_A : \mathbb{Z})$ has only integer values. According to [Sto99, Lemma 5.2] and [Pet99, Lemma 1], the flow σ_t^f is weakly mixing

Applying the results of [PP90, Chapter 6], we deduce that the abscissa of convergence b_1 of Z(s) is determined as the root of the equation $P(-s\tilde{f}+\tilde{g})=P(-sf+g)=0$ with respect to s. This root is unique since $s\to P(-sf+g)$ is decreasing. Introduce the function

$$G(\xi, y) = -\frac{1}{2} \sum_{i=1}^{d-1} \frac{\kappa_j(\xi)}{1 + \kappa_j(\xi)y}.$$
 (A.3)

Clearly,

$$g(\xi) = 2 \int_0^{f(\xi)} G(\xi, y) dy.$$

Then [PP90, Proposition 6.1] says that $P(-b_1f + g) = 0$ is equivalent to $b_1 = P(2G)$. With the same argument we show that $a_1 = P(G)$.

This completes the proof of Proposition 1.2. ■

It easy to find a relation between P(2G) and P(g). Repeating the argument of [PS10, Section 3], one obtains that there exist probability measures ν_q , ν_0 on Σ_A invariant with respect to σ_A such that

$$\frac{P(g)}{\int f(\xi)d\nu_g} \le b_1 \le \frac{P(g)}{\int f(\xi)d\nu_0}.$$

Consequently, b_1 has the same sign as P(g).

We close this Appendix proving that $b_1 = b_2$. Consider the zeta function

$$Z_1(s) = \left(\sum_{n=1}^{\infty} \frac{1}{n} \sum_{(\sigma_A^+)^n \xi = \xi} e^{S_n(-s\tilde{f}(\xi) + \tilde{g}(\xi) + i\pi)}\right)$$

related to (1.9). Introduce the complex Ruelle operator

$$(\mathcal{L}_s u)(\xi) = \sum_{\sigma_A \eta = \xi} e^{(-s\tilde{f} + \tilde{g} + i\pi)(\eta)} u(\eta), \ u \in F_{\theta^{1/2}}(\Sigma_A^+).$$

Then for $s = b_1$ this operator has no eigenvalues 1 since this implies that the operator

$$(L_{b_1}u)(\xi) = \sum_{\sigma_A n = \xi} e^{(-b_1 \tilde{f} + \tilde{g})(\eta)} u(\eta)$$

has eigenvalue (-1). This is impossible because from $P(-b_1\tilde{f} + \tilde{g}) = 0$ one deduces that L_{b_1} has eigenvalue 1 and all other eigenvalues of L_{b_1} have modulus strictly less than 1 (see [PP90, Theorem 2.2]). This shows that the function $Z_1(s)$ is analytic for $s = b_1$, hence (1.9) has the same property. Finally, similarly to (1.3), we write the function (1.9) as a difference of two Dirichlet series with abscissas of convergence b_1 and b_2 . Therefore the inequality $b_2 < b_1$ leads to contradiction.

References

- [AFW17] Jean Francois Arnoldi, Frédéric Faure, and Tobias Weich. Asymptotic spectral gap and Weyl law for Ruelle resonances of open partially expanding maps. *Ergodic Theory Dynam. Systems*, 37(1):1–58, 2017.
- [Ber33] Vladimir Bernstein. Leçons sur les progrès récents de la théorie de séries de Dirichlet, professées au Collège de France. Gauthier-Villars, 1933.
- [BR75] Rufus Bowen and David Ruelle. The ergodic theory of Axiom A flows. *Invent. Math.*, 29(3):181–202, 1975.
- [Cot17] Emile Cotton. Sur l'abscisse de convergence des séries de Dirichlet. Bulletin Soc. Math., 45:121–125, 1917.
- [CP22] Yann Chaubet and Vesselin Petkov. Dynamical zeta functions for billiards. https://doi.org/10.48550/arXiv.2201.00683, 2022. Ann. Inst. Fourier, Grenoble, to appear.

- [DG16] Semyon Dyatlov and Colin Guillarmou. Pollicott–Ruelle resonances for open systems. *Annales Henri Poincaré*, 17(11):3089–3146, 2016.
- [DSW24] Benjamin Delarue, Philipp Schütte, and Tobias Weich. Resonances and weighted zeta functions for obstacle scattering via smooth models. *Annales Henri Poincaré*, 25(2):1607–1656, 2024.
- [FT13] Frédéric Faure and Masato Tsujii. Band structure of the Ruelle spectrum of contact Anosov flows. C. R. Math. Acad. Sci. Paris, 351(9-10):385–391, 2013.
- [FT17] Frédéric Faure and Masato Tsujii. The semiclassical zeta function for geodesic flows on negatively curved manifolds. *Inventiones mathematicae*, 208(3):851–998, 2017.
- [GMT21] Colin Guillarmou, Marco Mazzucchelli, and Leo Tzou. Boundary and lens rigidity for non-convex manifolds. *American Journal of Mathematics*, 143(2):533–575, 2021.
- [Has02] Boris Hasselblatt. *Hyperbolic dynamical systems*. North-Holland, Amsterdam, 2002.
- [Ika88a] Mitsuru Ikawa. Decay of solutions of the wave equation in the exterior of several convex bodies. *Ann. Inst. Fourier (Grenoble)*, 38(2):113–146, 1988
- [Ika88b] Mitsuru Ikawa. On the existence of poles of the scattering matrix for several convex bodies. *Proc. Japan Acad. Ser. A Math. Sci.*, 64(4):91–93, 1988.
- [Ika90a] Mitsuru Ikawa. On the distribution of poles of the scattering matrix for several convex bodies. In Functional-analytic methods for partial differential equations (Tokyo, 1989), volume 1450 of Lecture Notes in Math., pages 210–225. Springer, Berlin, 1990.
- [Ika90b] Mitsuru Ikawa. Singular perturbation of symbolic flows and poles of the zeta functions. Osaka J. Math., 27(2):281–300, 1990.
- [Ika00] Mitsuru Ikawa. On scattering by several convex bodies. *J. Korean Math. Soc.*, 37(6):991–1005, 2000.
- [JT23] Long Jin and Zhongkai Tao. Counting Pollicott-Ruelle resonances for Axiom A flows. https://doi.org/10.48550/arXiv.2306.02297, 2023.
- [JZ17] Long Jin and Maciej Zworski. A local trace formula for Anosov flows. Annales Henri Poincaré, 18(1):1–35, 2017. With appendices by Frédéric Naud.
- [Mor91] Takehiko Morita. The symbolic representation of billiards without boundary condition. *Transactions of the American Mathematical Society*, 325(2):819–828, 1991.
- [Pet99] Vesselin Petkov. Analytic singularities of the dynamical zeta function. Nonlinearity, 12(6):1663–1681, 1999.
- [Pet02] Vesselin Petkov. Lower bounds on the number of scattering poles for several strictly convex obstacles. *Asymptot. Anal.*, 30(1):81–91, 2002.
- [PP90] William Parry and Mark Pollicott. Zeta functions and the periodic orbit structure of hyperbolic dynamics. *Astérisque*, (187-188), 1990. 268 pp.
- [PS10] Vesselin Petkov and Luchezar Stoyanov. Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function. *Anal. PDE*, 3(4):427–489, 2010.

- [PS17] Vesselin M. Petkov and Luchezar N. Stoyanov. Geometry of the generalized geodesic flow and inverse spectral problems. John Wiley & Sons, Ltd., Chichester, second edition, 2017.
- [Sto99] Lachezar Stoyanov. Exponential instability for a class of dispersing billiards. Ergodic Theory Dynam. Systems, 19(1):201–226, 1999.
- [Sto01] Luchezar Stoyanov. Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows. *American Journal of Mathematics*, 123(4):715–759, 2001.
- [Sto09] Luchezar Stoyanov. Scattering resonances for several small convex bodies and the Lax-Phillips conjecture. *Memoirs Amer. Math. Soc.*, 199(933), 2009. vi+76 pp.
- [Sto12] Luchezar Stoyanov. Non-integrability of open billiard flows and Dolgopyat-type estimates. *Ergodic Theory and Dynamical Systems*, 32(1):295–313, 2012.
- [SWB23] Philipp Schütte, Tobias Weich, and Sonja Barkhofen. Meromorphic continuation of weighted zeta functions on open hyperbolic systems. *Comm. Math. Phys.*, 398(2):655–678, 2023.

Université de Bordeaux, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence, France

Email address: petkov@math.u-bordeaux.fr