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Abstract. Let D ⊂ Rd, d > 2, be the union of a finite collection of pairwise disjoint
strictly convex compact obstacles. Let µj ∈ C, Imµj > 0 be the resonances of the
Laplacian in the exterior of D with Neumann or Dirichlet boundary condition on
∂D. For d odd, u(t) =

∑
j ei|t|µj is a distribution in D′(R \ {0}) and the Laplace

transforms of the leading singularities of u(t) yield the dynamical zeta functions ηN, ηD
for Neumann and Dirichlet boundary conditions, respectively. These zeta functions
play a crucial role in the analysis of the distribution of the resonances. Under a
non-eclipse condition, for d > 2 we show that ηN and ηD admit a meromorphic
continuation in the whole complex plane. In the particular case when the boundary
∂D is real analytic, by using a result of Fried [Fri95], we prove that the function
ηD cannot be entire. Following Ikawa [Ika88b], this implies the existence of a strip
{z ∈ C : 0 < Im z 6 α} containing an infinite number of resonances µj for the
Dirichlet problem.

1. Introduction

Let D1, . . . , Dr ⊂ Rd, r > 3, d > 2, be compact strictly convex disjoint obstacles
with smooth boundary and let D =

⋃r
j=1 Dj. Throughout this paper we suppose the

following non-eclipse condition

Dk ∩ convex hull (Di ∪Dj) = ∅, (1.1)

for any 1 6 i, j, k 6 r such that i 6= k and j 6= k. Under this condition all periodic rays
for the billiard flow in Rd \ D̊ are ordinary reflecting ones without tangent segments to
the boundary of D. Notice that if (1.1) is not satisfied, for generic perturbations of ∂D

all periodic reflecting rays in Rd\D̊ have no segments tangent to ∂D (see Theorem 6.3.1
in [PS17]). We consider the (non grazing) billiard flow (ϕt)t∈R (see §2.2 for a precise
definition). For any periodic γ, denote by Pγ its associated linearized Poincaré map
and by τ(γ) its period. Let P be the set of all periodic rays. The counting function of
the lengths of periodic rays satisfies the bound

]{γ ∈ P : τ(γ) 6 τ} 6 eaτ , τ > 0,

for some a > 0. Moreover, for some constants C, b1, b2 > 0 we have (see for instance
[Pet99])

Ceb1τ(γ) 6 | det(Id− Pγ)| 6 eb2τ(γ), γ ∈ P .
By using these estimates, for Re(s)� 1 we define two Dirichlet series

ηN(s) =
∑
γ∈P

τ ](γ)e−sτ(γ)

| det(Id− Pγ)|1/2
, ηD(s) =

∑
γ∈P

(−1)m(γ) τ ](γ)e−sτ(γ)

| det(Id− Pγ)|1/2
,

1
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where for any periodic γ, we denoted by τ ](γ) its primitive period, and by m(γ) the
number of reflexions of γ on the obstacles. Here the sums run over all oriented pe-
riodic rays. Notice that some periodic rays have only one orientation, while others
admits two ones (see §2.3). On the other hand, the length τ ](γ), the period τ(γ) and
| det(Id− Pγ)|1/2 are independent of the orientation of γ.

The series ηN(s), ηD(s) are related to the resonances of the self-adjoint operators
−∆b, b = N,D, acting on domains Db ⊂ H = L2(Rd \D), with Neumann and Dirich-
let boundary conditions on ∂D, respectively. To explain this relation, consider the
resolvents

Rb(µ) =
(
−∆b − µ2

)−1
,

which are analytic in {µ ∈ C : Imµ < 0}. Then Rb(µ) : Hcomp → Db,loc has a
meromorphic continuation for µ ∈ C if d is odd, and in the logarithmic covering of
C\{0} if d is even (see [LP89, Chapter 5] for d odd and [DZ19, Chapter 4]). The poles
µj, Imµj > 0, of these continuations are called resonances. Introduce the distribution
u ∈ D′(R) given by the trace

u(t) = 2trL2(Rd)

(
cos(t

√
−∆b)⊕ 0− cos(t

√
−∆0)

)
,

where ∆0 is the free Laplacian in Rd and cos(t
√
−∆b) ⊕ 0 acts as 0 on L2(D). Then

for d odd, [Mel82] (see also [BGR82] for a slightly weaker result) proved that we have,
in D′(R \ {0}),

u(t) =
∑
j

m(µj)e
i|t|µj ,

where m(µj) is the multiplicity of µj. Here in the notations we omitted the dependence
on the boundary conditions. The series above converge in the sense of distributions
since we have the bound ]{µj : |µj| 6 r} 6 Crd for all r > 0 (see Section 4.3 in [DZ19]).
The reader may also consult [Zwo97] and [DZ19] for a proof treating the singularity of
u(t) at t = 0. For d even, the situation is more complicated since the resonances are

defined in a logarithmic covering of C \ {0}. Let Λ = C \ ei
π
2
R+

and for ρ > 0 let

Λρ = {µ ∈ Λ : | Imµ| 6 ρ|Reµ|, 0 < arg µj < π}.

Choose a function ψ in C∞c (R; [0, 1]) equal to 1 in a neighborhood of 0 and denote by
σb(λ) the scattering phase related to −∆b (see [Zwo98] for the notation). Following
the work of Zworski (Theorem 1 in [Zwo98]), there exists a function vρ,ψ ∈ C∞(R\{0})
such that for even dimension d in the sense of distributions D′(R \ {0}) one has

u(t) =
∑
µj∈Λρ

m(µj)e
iµj |t| +m(0)

+ 2

∫ ∞
0

ψ(λ)
dσ

dλ
(λ) cos(tλ)dλ+ vρ,ψ(t),

(1.2)

where m(0) is a constant. The reader may consult [Sjö97] for a local trace formula
involving the resonances. Concerning the singularities of the distribution u(t), from
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[BGR82] it follows that

sing supp u ⊂ {±τ(γ) : γ ∈ P}.
Under the condition (1.1), every periodic trajectory γ is an ordinary reflecting ray
and the leading singularity of u(t) at t = T was described by Guillemin and Melrose
[GM79]. More precisely, the singularity related to T has the form∑

γ∈P,τ(γ)=T

(−1)m(γ)τ ](γ)| det(Id− Pγ)|−1/2δ(t− T ) + L1
loc(R) (1.3)

(see for instance, Corollary 4.3.4 in [PS17]), where for the Neumann problem the factor
(−1)m(γ) must be omitted. Taking the sum of the Laplace transforms of the leading
singularities of u(t)|R+ related to τ(γ), γ ∈ P , we obtain the Dirichlet series ηN(s), ηD(s).

The analytic singularities of ηN(s) and ηD(s) are important for the analysis of the
distribution of the resonances (see [Ika88b, Ika90a, Ika90b, Ika92, Sto09, Pet08] and the
papers cited there). By using the Ruelle transfer operator and symbolic dynamics (see
[Ika90a, Pet99, Sto09, Mor91]), a meromorphic continuation of s 7→ ηN(s), ηD(s) has
been proved in a domain s0 − ε 6 Re s with a suitable ε > 0, where s0 is the abscissa
of absolute convergence of the Dirichlet series ηN(s), ηD(s). Recently, a meromorphic
continuation on C of the series∑

γ∈P

τ ](γ)e−sτ(γ)

| det(Id− Pγ)|
, Re(s)� 1, (1.4)

has been proved by Küster–Schütte–Weich [KSW21] (see also [BSW21, Theorem 4.4]
for results concerning weighted zeta functions). On the other hand, a meromorphic
continuation in the whole complex plane of the semi-classical zeta function for contact
Anosov flows was established by Faure–Tsujii [FT17]. Their zeta function is similar
to the function ζN(s) defined in (1.5) below. The meromorphic continuation of the
Ruelle zeta function

∏
γ∈P(1 − e−sτ(γ))−1 for general Anosov flows was established by

Giulietti–Liverani–Pollicott [GLP13] (see also the work of Dyatlov–Zworski [DZ16] for
another proof based on microlocal analysis). In this paper the series ηN(s), ηD(s) are
simply called dynamical zeta functions following previous works [Pet99, Pet08] and we
refer to the book of Baladi [Bal18] for more references concerning zeta functions for
hyperbolic dynamical systems.

Our main result is the following

Theorem 1. Let d > 2 and let the obstacles Dj, j = 1, ..., r, satisfy the condition
(1.1). Then the series ηN(s) and ηD(s) admit a meromorphic continuation to the whole
complex plane with simple poles and integer residues.

One may also consider the zeta functions ζb(s) associated to the boundary conditions
b = D,N, defined for Re s large enough by

ζb(s) = exp

(
−
∑
γ∈P

(−1)m(γ)ε(b) e−sτ(γ)

µ(γ)| det(Id− Pγ)|1/2

)
, (1.5)
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where ε(D) = 1, ε(N) = 0 and τ(γ) = µ(γ)τ ](γ); µ(γ) ∈ N is the repetition number.
Notice that we have

ζ ′b(s)

ζb(s)
= ηb(s), b = D,N, Re s� 1. (1.6)

In particular, since by the above theorem ηb(s) has simple poles with integer residues,
it follows by a classical argument of complex analysis that we have the following

Corollary 2. Under the assumptions of Theorem 1 for b = D,N, the function s 7→
ζb(s) extends meromorphically to the whole complex plane.

In fact, we will prove a slightly more general result. For q ∈ N, q > 2, consider the
Dirichlet series

ηq(s) =
∑

γ∈P, m(γ)∈qN

τ ](γ)e−sτ(γ)

| det(Id− Pγ)|1/2
, Re(s)� 1,

where the sum runs over all periodic rays γ with m(γ) ∈ qN. We will show that ηq(s)
admits a meromorphic continuation to the whole complex plane, with simple poles and
residues valued in Z/q (see Theorem 4). In particular, considering the function ζq(s)
defined by

ζq(s) = exp

− ∑
γ∈P, m(γ)∈qN

e−sτ(γ)

µ(γ)| det(Id− Pγ)|1/2

 , Re s� 1,

one gets qζ ′q/ζq = qηq. Thus the function s 7→ ζq(s)
q extends meromorphically to

the whole complex plane since its logarithmic derivative is qηq and by Theorem 4
the function qηq has simple poles with integer residues. One reason for which it is
interesting to study these functions is the relation

ηD(s) = − d

ds
log

ζ2(s)2

ζN(s)
= 2η2(s)− ηN(s), (1.7)

showing that ηD(s) for Re s � 1 is expressed as the difference of two Dirichlet series
with positive coefficients. In particular, to show that ηD(s) has a meromorphic exten-
sion to C, it is sufficient to prove that both series ηN(s) and η2(s) have this property.

The distribution of the resonances µj depends on the geometry of the obstacles and
for trapping obstacles it was conjectured that there exists α > 0 such that, for d odd,

N0,α = ]{µj ∈ C : 0 < Imµj 6 α} =∞. (1.8)

For d even we must count

N0,α = ]{µj ∈ C : 0 < Imµj 6 α, 0 < arg z < π} (1.9)

since a meromorphic extension ofRD(µ) is possible on the Riemann logarithmic surface
Λ = {−∞ < arg z < +∞}. This conjecture was introduced by Ikawa [Ika90a] for d odd
and it is known as the modified Lax-Phillips conjecture (MLPC). In this direction, for d
odd, Ikawa [Ika88b, Ika90a] proved that for strictly convex disjoint obstacles satisfying
(1.1) the existence of at least one singularity of ηN(s) or ηD(s) implies the existence of
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α > 0 for which (1.8) holds for the Neumann or Dirichlet boundary problem. Notice
that the value α > 0 in [Ika90a] is related to the singularity of ηD(s) and to some
dynamical characteristics. The proof in [Ika90a] can be modified to cover also the case
d even, applying the trace formula of Zworski (1.2) (see Appendix B). The existence of
a singularity of the dynamical zeta function trivially holds for the Neumann problem
since ηN(s) is a Dirichlet series with positive coefficients, and by a classical result, ηN(s)
must have a singularity at s0 ∈ R, where Re s = s0 is the line of absolute convergence
of ηN(s). Moreover, for d odd (see [Pet02]) there are constants c0 > 0, ε0 > 0 such that
for every 0 < ε 6 ε0 it holds

]
{
µj ∈ C : 0 < Imµj 6

c0

ε
, |µj| 6 r

}
> Cεr

1−ε.

The situation for the Dirichlet problem is more complicated since ηD(s) is analytic
for Re s > s0, s0 being the abscissa of absolute convergence [Pet99]. Moreover, for
d = 2 [Sto01] and for d > 3 under some conditions [Sto12] Stoyanov proved that
there exists ε > 0 such that ηD(s) is analytic for Re s > s0 − ε. The reason of this
cancellation of singularities is related to the change of signs in the Dirichlet series
defining ηD(s), as it is emphasized by the relation (1.7). Despite many works in the
physical literature concerning the n-disk problem (see for example [CVW97, Wir99,
LZ02, PWB+12, BWP+13] and the references cited there), a rigorous proof of the
(MLPC) was established only for sufficiently small balls [Ika90b] and for obstacles
with sufficiently small diameters [Sto09]. In this direction we prove the following

Theorem 3. Under the assumptions of Theorem 1, if moreover the boundary ∂D is
real analytic, then the function ηD has at least one pole and the (MLPC) is satisfied
for the Dirichlet problem, that is, there exists α > 0 such that (1.8) (resp. (1.9)) holds
if d is odd (resp. d is even).

Our paper relies heavily on the works [DG16, KSW21] and we provide specific ref-
erences in the text. For convenience of the reader we explain briefly the general idea
of the proofs of Theorems 1 and 3. First, in §2 we make some geometric preparations.
The non-grazing billiard flow (ϕt) acts on M = B/ ∼, where

B = SRd \ (π−1(D̊) ∪ Dg),

π : SRd → Rd is the natural projection, Dg = π−1(∂D) ∩ TD is the grazing part
and (x, v) ∼ (y, w) if and only if (x, v) = (y, w) or x = y ∈ ∂D and w is equal to
the reflected direction of v at x ∈ ∂D. By using this factorization, the flow (ϕt) be-
comes continuous in M . However, to apply the Dyatlov–Guillarmou theory [DG16]
in order to study the spectral properties of (ϕt) which are related to the dynamical
zeta functions, we need to work with a smooth flow. For this reason we use a special
smooth structure near ∂D with smooth charts introduced in the recent work of Küster–
Schütte–Weich [KSW21] (see §2.2). In this smooth model, the flow (ϕt) is smooth, and
it is uniformly hyperbolic when restricted to the compact trapped set K of ϕt (see
§2.4). The periodic points are dense in K and for any z ∈ K the tangent space TzM
has the decomposition TzM = RX(z)⊕Eu(z)⊕Es(z) with unstable and stable spaces
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Eu(z), Es(z), where X is the generator of ϕt. A meromorphic continuation of the cut-
off resolvent χ(X + s)−1χ with χ ∈ C∞c (M) supported near K has been established in
[DG16] in a general setting. As in [DZ16] and [DG16], the estimates on the wavefront
set of the resolvent χ(X + s)−1χ allow to define its flat trace which is related to the
series (1.4). This implies a meromorphic continuation of this series in C (see [KSW21]).

To prove a meromorphic continuation of the series ηN(s) which involves factors
| det(Id − Pγ)|−1/2 instead of | det(Id − Pγ)|−1, a natural approach would consist to
study the Lie derivative LX acting on sections of the unstable bundle Eu(z) (see for
example [FT17, pp. 6–8]). However, in general, Eu(z) is not smooth with respect to z,
but only Hölder continuous. Thus we are led to change the geometrical setting as in
the work of Faure–Tsujii [FT17] (notice that the Grassmann bundle introduced below
also appears in [BR75] and [GL08]). Consider the Grasmannian bundle πG : G → V
over a neighborhood V of K; for every z ∈ V the fiber π−1

G (z) is formed by all (d− 1)-

dimensional planes of TzV. Define the trapping set K̃u = {(z, Eu(z)) : z ∈ K} ⊂ G
and introduce the natural lifted smooth flow (ϕ̃t) on G (see §2.5). Then according to

[BR75, Lemma A.3], the set K̃u is hyperbolic for (ϕ̃t). We introduce the tautological
bundle E → G by setting

E = {(ω, v) ∈ π∗G(TV ) : ω ∈ G, v ∈ [ω]},

where [ω] denotes the subspace of TπG(ω)V that ω ∈ G represents, and π∗G(TV ) is the
pull-back of the tangent bundle TV → V by πG. Next, we define the vector bundle
F → G by

F = {(ω,W ) ∈ TG : dπG(w) ·W = 0}
which is the “vertical subbundle” of the bundle TG→ G. Finally, set

Ek,` = ∧kE∗ ⊗ ∧`F , 0 6 k 6 d− 1, 0 6 ` 6 d2 − d,

where E∗ is the dual bundle of E . One defines a suitable flow Φk,`
t : Ek,` → Ek,` as well

as a transfer operator (see §2.6 for the notations)

Φk,`,∗
−t u(ω) = Φk,`

t [u(ϕ̃−t(ω)], u ∈ C∞(G, Ek,`).

For a periodic orbit γ of ϕt, this geometrical setting allows to express the term | det(Id−
Pγ)|−1/2 as a finite sum involving the traces tr(αk,`γ̃ ) related to the periodic orbit γ̃ =

{(γ(t), Eu(γ(t)) : t ∈ [0, τ(γ)]} of the flow (ϕ̃t) (see §3.2 for the notation αk,`γ̃ and

Lemma 3.1). This crucial argument explains the introduction of the bundles Ek,` and
the related geometrical technical complications. In this context we may apply the
Dyatlov–Guillarmou theory (see Theorem 1 in [DG16]) for the generators

Pk,`u =
d

dt

(
Φk,`,∗
−t u

)∣∣∣∣
t=0

, u ∈ C∞(G, Ek,`)

of the transfer operators Φk,`,∗
−t (in fact, by using smooth connexion, we introduce a new

operator Qk,` which coincide with Pk,` near K̃u (see §2.8)). This leads to a meromophic

continuation of the the cut-off resolvent χ̃(Qk,` + s)−1χ̃, where χ̃ ∈ C∞c (Ṽu) is equal
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to 1 on K̃u (see 2.8 for the notations). By applying the Guillemin flat trace formula
[Gui77] (see [DZ16, Appendix B] and Section 3 in [BSW21]), concerning

tr[
(∫ ∞

0

%(t)χ̃(e−tQk,`u)χ̃dt
)
, % ∈ C∞c (0,∞),

we obtain the meromorphic continuation of ηN. Finally, the meromorphic continuation
of ηq is obtained in a similar way, by considering in addition a certain q-reflexion bundle
Rq → G on which the flow ϕ̃t can be lifted (see §4.1).

The strategy to prove Theorem 3 is the following. First, the representation (1.7)
tells us that, if ηD can be extended to an entire function, then the function ζ2

2/ζN has
neither zeros nor poles on the whole complex plane. For obstacles with real analytic
boundary we may use real analytic charts near ∂D to define a real analytic structure
on M which makes (ϕt) a real analytic flow. In this setting we may apply a result of
Fried [Fri95] to the non-grazing flow ϕt lifted to the Grassmannian bundle, and show
that the entier functions ζ2 and ζN have finite order. This crucial point implies that
the meromorphic function ζ2

2/ζN has also finite order. Finally, by using Hadamard’s
factorisation theorem, one concludes that we may write ζ2(s)2/ζN(s) = eQ(s) for some
polynomial Q(s). This leads to ηD(s) = −Q′(s) and we obtain a contradiction. Notice
that this argument works as soon as the entier functions ζ2 and ζN have finite order.
The recent work of Bonthonneau–Jézéquel [BJ20] about Anosov flows suggests that
this should be satisfied for obstacles with Gevrey regular boundary ∂D. In particular,
the (MLPC) should be true for such obstacles. However in this paper we are not going
to study this generalization.

The paper is organised as follows. In §2 one introduces the geometric setting of the
billiard flow (ϕt) and its smooth model. We define the Grasmann extension G and the
bundles E ,F , Ek,l = ΛkE? ⊗ Λ`F over G. Next, we discuss the setting for which we
apply the Dyatlov-Guillarmou theory [DG16] for some first order operator Qk,` leading
to a meromorphic continuation of the cut-off resolvent Rk,`(s) = χ̃(Qk,` + s)−1χ̃. In
§3 we treat the flat trace of the resolvent Rk,`

ε (s) = e−ε(Qk,`+s)Rk,`(s), ε > 0, and we
obtain a meromorphic continuation of ηN . In §4 we study the dynamical zeta functions
ηq(s) for particular rays γ having number of reflections m(γ) ∈ qN, q > 2. Applying
the result for η2(s), we deduce the meromorphic continuation of ηD. Finally, in §5 we
treat the modified Lax-Phillips conjecture for obstacles with real analytic boundary.
In Appendix A we present a proof for d > 2 of the uniform hyperbolicity of the flow
ϕt in the Euclidean metric in Rd, while in Appendix B we discuss the modifications of
the proof of Theorem 2.1 in [Ika90a] for even dimensions.
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Nonnenmacher, Tobias Weich and Luchezar Stoyanov for very interesting discussions.
Thanks are also due to Colin Guillarmou for pointing us that we could use Fried’s
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Research Council (ERC) under the European Unions Horizon 2020 research and inno-
vation programme with agreement No. 725967.
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2. Geometrical setting

2.1. The billiard flow. Let D1, . . . , Dr ⊂ Rd be pairwise disjoint compact convex
obstacles, satisfying the condition (1.1), where r > 3. We denote by SRd the unit
tangent bundle of Rd and by π : SRd → Rd the natural projection. For x ∈ ∂Dj, we
denote by nj(x) the inward unit normal vector to ∂Dj at the point x pointing into Dj.
Set D =

⋃r
j=1Dj and

D = {(x, v) ∈ SRd : x ∈ ∂D}.
We will say that (x, v) ∈ T∂DjRd is incoming (resp. outgoing) if 〈v, nj(x)〉 > 0 (resp.
〈v, nj(x)〉 < 0), and introduce

Din = {(x, v) ∈ D : (x, v) is incoming},
Dout = {(x, v) ∈ D : (x, v) is outgoing}.

We define the grazing set Dg = T (∂D) ∩ D and one gets

D = Dg t Din t Dout.

The billiard flow (φt)t∈R is the complete flow acting on SRd \ π−1(D̊) which is defined

as follows. For (x, v) ∈ SRd \ π−1(D̊) we set

τ±(x, v) = ± inf{t > 0 : x± tv ∈ ∂D}

and for (x, v) ∈ Din/out/g we denote by v′ ∈ Dout/in/g the image of v by the reflexion
with respect to Tx(∂D) at x ∈ ∂D, that is

v′ = v − 2〈v, nj(x)〉nj(x), v ∈ SxRd, x ∈ ∂Dj

(see Figure 1). By convention, we have τ±(x, v) = ±∞, if the ray x + ±tv has no

x
v ∈ Din

v′ ∈ Dout
y

w

φt(y, w)

Di

Tx∂Di

ni(x)

Figure 1. The billiard flow φt

common point with ∂D for ±t > 0. Then for (x, v) ∈ (SRd \ π−1(D)) ∪ Dg we define

φt(x, v) = (x+ tv, v), t ∈ [τ−(x, v), τ+(x, v)],
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while for (x, v) ∈ Din/out, we set

φt(x, v) = (x+ tv, v) if

{
(x, v) ∈ Din, t ∈ [0, τ+(x, v)] ,

or (x, v) ∈ Dout, t ∈ [τ−(x, v), 0] ,

and

φt(x, v) = (x+ tv′, v′) if

{
(x, v) ∈ Dout, t ∈ ]0, τ+(x, v)] ,

or (x, v) ∈ Din, t ∈ [τ−(x, v), 0[ .

Next we extend (φt) to a complete flow (which we still denote by (φt)) satisfying the
property

φt+s(x, v) = (φt ◦ φs)(x, v), t, s ∈ R, (x, v) ∈ SRd \ π−1(D).

Strictly speaking, (φt) is not a flow, since the above flow property does not hold in full
generality for (x, v) ∈ Din/out. However, we can arrange it by considering an appropriate
quotient space (see §2.2 below).

2.2. A smooth model for the non-grazing billiard flow. In this subsection, we
briefly recall the construction of [KSW21, Section 3] which allows to obtain a smooth
model for the non-grazing billiard flow. First, we define the non- grazing billiard table
M as

M = B/ ∼, B = SRd \
(
π−1(D̊) ∪ Dg

)
,

where (x, v) ∼ (y, w) if and only if (x, v) = (y, w) or

x = y ∈ ∂D and w = v′.

The set M is endowed with the quotient topology. We will change the notation and
pass from φt to the non-grazing flow ϕt, which is defined on M as follows. For (x, v) ∈
(SRd \ π−1(D)) ∪ Din we define

ϕt([(x, v)]) = [φt(x, v)], t ∈ ]τ g
−(x, v), τ g

+(x, v)[ ,

where [z] denotes the equivalence class of the vector z ∈ B for the relation ∼, and

τ g
±(x, v) = ± sup{t > 0 : φ±t(x, v) ∈ Dg}.

Clearly, we may have τ g
±(x, v) = ±∞. Note that this formula indeed defines a flow on

M since each (x, v) ∈ B has a unique representative in (SRd \π−1(D̊)∪Din. Thus (ϕt)
is continuous but not complete and for times t /∈ ]τ g

−(x, v), τ g
+(x, v)[ , the flow is not

defined.

Following [KSW21, Section 3], we define smooth charts on M = B/ ∼ as follows.
Introduce the surjection map πM : B →M by πM(x, v) = [(x, v)] and note that

ϕt ◦ πM = πM ◦ φt. (2.1)

Set B̊ := SRd \ π−1(D). Then πM : B̊ → M is a homeomorphism onto its image

O. Let G = πM(Din) be the gluing region. We consider the map π−1
M : O → B̊ as a

chart. Next we wish to define charts in an open neighborhood of G. For every point
z? = (x?, v?) ∈ Din let

Fz? : Uz? × Uz? → Din
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be a local smooth parametrization of Din, where Uz? is an open small neighborhood of
0 in Rd−1. For small εz? > 0, we may define the map

Ψz? : ]−εz? , εz? [× Uz? × Uz? →M

by
Ψz?(t, y, w) = (πM ◦ φt ◦ Fz?)(y, w). (2.2)

Up to shrinking Uz? and taking εz? smaller, Ψz? is a homeomorphism onto its image
Oz? ⊂ M , (see Corollary 4.3 in [KSW21]). Indeed, to see that Ψz? is injective, let
Fz?(yk, wk) = (xk, vk) ∈ Din, k = 1, 2, and assume that πMφt1(x1, v1) = πMφt2(x2, v2).
Since the vectors in Din are transversal to ∂D, we see that for each z ∈ Oz? , there is a
unique t ∈ ]−εz? , εz? [ such that ϕt(z) ∈ G. In particular, we have t1 = 0 if and only if
t2 = 0. In this case, (x1, v1) = (x2, v2) since πM : Din → G is injective. If t1 6= 0, t2 6= 0,

then t1 and t2 have the same sign and by the infectivity of πM : B̊ → M and the
definition of φt, we have{

(x1 + t1v1, v1) = (x2 + t2v2, v2) if t1, t2 > 0,
(x1 + t1v

′
1, v
′
1) = (x2 + t2v

′
2, v
′
2) if t1, t2 < 0,

where v′k is the reflexion of vk with respect to Txk∂D for k = 1, 2. Thus one concludes
that (t1, x1, v1) = (t2, x2, v2). As mentioned above, the directions in Din are transversal
to the boundary ∂D. This implies that the maps Ψz? are open ones. In particular, Ψz?

realises a homeomorphism onto its image Oz? and we declare the map Ψ−1
z? : Oz? →

]−εz? , εz? [× Uz? × Uz? as a chart. Hence we obtain an open covering

G ⊂
⋃

z?∈Din

Oz? .

Note that if O ∩Oz? 6= ∅ for any z?, clearly the map

(t, x, v) 7→ (π−1
M ◦Ψz?)(t, x, v) = (φt ◦ Fz?)(x, v)

is smooth on Ψ−1
z? (O ∩ Oz?). On the other hand, assume that Oz? ∩ Oz′? 6= ∅ for some

z?, z
′
? ∈ Din. If πM(φt(Fz?(x, v))) = πM(φs(Fz′?(y, w))) ∈ Oz? ∩ Oz′? , then as above this

yields t = s, Fz?(x, v) = Fz′?(y, w), and we conclude that

(Ψ−1
z? ◦Ψz′?)(t, y, w) =

(
Ψ−1
z? ◦ πM ◦ φt ◦ Fz′?

)
(y, w)

=
(
Ψ−1
z? ◦ πM ◦ φt ◦ Fz?

) (
(F−1

z? ◦ Fz′?)(y, w)
)

=
(
t, (F−1

z? ◦ Fz?)(y, w)
)
.

(2.3)

This shows that the change of coordinates Ψ−1
z? ◦Ψz′? is smooth on the set Ψ−1

z′?
(Oz?∩Oz′?),

and these charts endow M with a smooth structure. It is easy to see that with this
differential structure makes, the flow (ϕt) is smooth on M . Indeed, this is obvious far
from the gluing region G. Now let z ∈ G and z? ∈ Din be such that πM(z?) = z. Then
for s, t ∈ R, with |t|+ |s| small, and (y, w) ∈ Uz? × Uz? , we have(

Ψ−1
z? ◦ ϕs ◦Ψz?

)
(t, y, w) =

(
Ψ−1
z? ◦ ϕs ◦ πM ◦ φt ◦ Fz?

)
(y, w)

=
(
Ψ−1
z? ◦ πM ◦ φt+s ◦ Fz?

)
(y, w)

= (s+ t, y, w).
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Consequently, the flow (ϕt) is also smooth near G and we obtain a smooth non-complete
flow on M .

2.3. Oriented periodic rays. A periodic point of the billiard flow is a pair (x, v)
lying in SRd, together with a number τ > 0, such that φτ (x, v) = (x, v). The number
τ > 0 is called the period of the periodic point (x, v). A periodic trajectory of (φt), or
equivalently an oriented periodic ray, is by definition an equivalence class of periodic
points, where we identify two periodic points (x, v) and (y, w), if they have same the
period, and if there are τ1, τ2 ∈ R such that φτ1(x, v) = φτ2(y, w). Of course, the map
πM induces a bijection between oriented periodic rays and periodic orbits of the non-
grazing flow (ϕt). For each periodic orbit γ, we will denote by τ(γ) its period. Also,
we will often identify a periodic orbit with a parametrization γ : [0, τ(γ)]→ SRd.

Note that every oriented periodic ray is determined by a sequence

αγ = (i1, . . . , ik),

where ij ∈ {1, . . . , r}, with ik 6= i1 and ij 6= ij+1 for j = 1, ..., k − 1, such that γ has
successive reflections on ∂Di1 , . . . , ∂Dik . The sequence αγ is well defined modulo cyclic
permutation, and we say that the ray γ has type αγ. The non-eclipse condition (1.1)
implies that the reciprocal is true. More precisely, for any sequence α = (i1, . . . , ik)
with ij 6= ij+1 for j = 1, . . . , k−1 and ik 6= i1, there exists a unique periodic ray γ such
that αγ = α (see [PS17, Proposition 2.2.2 and Corollary 2.2.4]).

We conclude this paragraph by some remark on the oriented rays. For every oriented
periodic ray γ generated by a periodic point (x, v) and period τ , one may consider the
reversed ray γ̄, generated by (x,−v) and τ. There are two possibilities. For most rays,
γ and γ̄ give rise to different oriented periodic rays, even if theirs projections in Rd

are the same. However it might happen that γ̄ coincides with γ. This is the case, for
example, if the ray γ has type α = (1, 2) (modulo permutation).

2.4. Uniform hyperbolicity of the flow ϕt. From now on, we will work exclusively
with the flow (ϕt) defined on the smooth model described in §2.2. Let X be the gen-
erator of (ϕt). The trapped set K of (ϕt) is defined as the set of points z ∈ M which
satisfy −τ g

−(z) = τ g
+(z) = +∞ and

supA(z) = − inf A(z) = +∞, where A(z) = {t ∈ R : π(ϕt(z)) ∈ ∂D}.

By definition, ϕt(z) is defined for all t ∈ R whenever z ∈ K. The flow (ϕt) is called
uniformly hyperbolic on K, if for each z ∈ K there exists a decomposition

TzM = RX(z)⊕ Eu(z)⊕ Es(z), (2.4)

which is dϕt-invariant (in the sense that dϕt(E•(z)) = E•(ϕt(z)) for • = u, s), with
dimEs(z) = dimEu(z) = d−1, such that for some constants C > 0, ν > 0, independent
of z ∈ K, and some smooth norm ‖ · ‖ on TM , we have

‖dϕt(z) · v‖ 6

{
Ce−νt‖v‖, v ∈ Es(z), t > 0,

Ce−ν|t|‖v‖, v ∈ Eu(z), t 6 0.
(2.5)
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The spaces Es(z) and Eu(z) depend continuously on z.

We may define the trapping set Ke for the flow (φt) in the Euclidean metric. Then
K = πM(Ke). The uniform hyperbolicity on Ke of the flow (φt) in the Euclidean

metric can be defined by the splitting of the tangent space Tz(Rd) for z ∈ B̊ ∩Ke (see
Definition 2.10 in [KSW21] and Appendix A). Following this definition, one avoids the
points (x, v) ∈ Ke ∩ Din. Denote Din = {(x, v) : x ∈ ∂D, |v| = 1, 〈v, n(x)〉 > 0} and
define the billiard ball map

B : Din 3 (x, v) 7−→ (y,Ryw) ∈ Din,

where Ry : SyRd → SyRd is the reflexion with respect to Ty∂D and

(y, w) = φτ+(x,v)(x, v), τ+(x, v) = inf{t > 0 : π(φt(x, v)) ∈ ∂D}.
This map B is called collision map in [CM06], it is well defined near Ke ∩ Din and it
is smooth (see for instance, [Kov88]). For (x, v) ∈ Ke ∩ Din we can write dφt(x, v) as
a composition of the differentials of smooth maps (see [CM06, §4.4] and Appendix A)
and this is useful for the estimates of ‖dφt(x, v)‖.

The uniform hyperbolicity of (φt) in the Euclidean metric implies the uniform hy-
perbolicity of (ϕt) in the smooth model (see [KSW21, Proposition 3.8]). Thus, to
obtain (2.5), we may apply the uniform hyperbolcity of (φt) in the Euclidean metric on

B̊ ∩Ke established for d = 2 in [Mor91] and [CM06, §4.4]. For d > 3, the same could
perhaps be obtained by applying the results in [BCST03, §4]. The hyperbolicity at the
points z = (x, v) ∈ Ke which are not periodic must be justified and the stable/unstable
spaces Es(z)/Eu(z) must be well determined; for d > 3 this seems to be not sufficiently
detailed in the literature. Since the hyperbolicity of (ϕt) is crucial for our exposition,
and for the sake of completeness, we present in Appendix A a proof of the uniform
hyperbolicity as well as a construction of Es(z) and Eu(z) for all z ∈ B̊ ∩Ke.

2.5. The Grassmann extension. In what follows, we will take a small neighborhood
V of K, with smooth boundary. We embed V into a compact manifold without bound-
ary N . For example, we may take the double manifold N of the closure of V . This
means that N = V̄ ×{0, 1}/ ∼ and (x, 0) ∼ (x, 1) for all x ∈ ∂V . We arbitrarily extend
X to obtain a smooth vector field on N , which we still denote by X. The associated
flow is still denoted by (ϕt) (however note that this new flow (ϕt) is now complete).

For our exposition is important to introduce the (d− 1)-Grassmann bundle

πG : G→ N

over N . More precisely, for every z ∈ N , the set π−1
G (z) consists of all (d − 1)-

dimensional planes of TzN . Moreover, π−1
G (z) can be identified with the Grasmannian

Gd−1(R2d−1) which is isomorphic to O(2d−1)/(O(d−1)×O(d)), O(k) being the space
of (k×k) orthogonal matrices with elements in R. The dimension of O(k) is k(k−1)/2,
hence the dimension of π−1

G (z) is d(d− 1). Note that G is a smooth compact manifold.
We may lift the flow ϕt to a flow ϕ̃t : G→ G which is simply defined by

ϕ̃t(z, E) = (ϕt(z), dϕt(z)(E)), z ∈ N, E ⊂ TzN, dϕt(z)(E) ⊂ Tϕt(z)N. (2.6)
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Introduce the set

K̃u := {(z, Eu(z)) : z ∈ K} ⊂ G.

Clearly, K̃u is invariant under the action of ϕ̃t, since dϕt(z)(Eu(z)) = Eu(ϕt(z)). As

K is a hyperbolic set, it follows from [BR75, Lemma A.3] that the set K̃u will be
hyperbolic for ϕ̃t and we have a decomposition

TωG = RX̃(ω)⊕ Ẽu(ω)⊕ Ẽs(ω), ω ∈ K̃u.

Here X̃ is the generator of the flow (ϕ̃t) and the spaces Ẽs(ω) and Ẽu(ω) are defined
as follows. For small ε > 0, let

Ws(z, ε) = {z′ ∈M : dist (ϕt(z), ϕt(z
′)) 6 ε for every t > 0}

and

Wu(z, ε) = {z′ ∈M : dist (ϕ−t(z), ϕ−t(z
′)) 6 ε for every t > 0}

be the local stable and unstable manifolds at z of size ε, where dist is any smooth
distance on M . For b = s, u, we define

W̃b(z) = TWb(z, ε) = {(z′, Eb(z′)) : z′ ∈ Wb(z, ε)} ⊂ G.

Finally, for ω = (z, Eu(z)) ∈ K̃u, set

Ẽu(ω) = Tω(W̃u(z)),

and define Ẽs(ω) as the tangent space at ω of the manifold

W̃s,tot(z) =
{
E ∈ π−1

G (Ws(z, ε)) : dist(Eu(z), E) < ε
}
,

where dist is any smooth distance on the fibres of TN .

Lemma 2.1. For any ω = (z, E) ∈ G we have natural isomorphisms

Ẽu(ω) ' Eu(z), Ẽs(ω) ' Es(z)⊕ ker dπG(ω).

Under these identifications, we have

dϕ̃t|Ẽu(ω) ' dϕt|Eu(z), dϕ̃t|Ẽs(ω) ' dϕt|Es(z) ⊕ dϕ̃t|ker dπG(ω).

Proof. Note that if ω = (z, E) ∈ G, by (2.6) one has

dπG(ω) ◦ dϕ̃t(ω) = d(πG ◦ ϕ̃t)(ω) = d(ϕt ◦ πG)(ω) = dϕt(z) ◦ dπG(ω). (2.7)

This equality shows that dϕ̃t preserves ker dπG. Looking at the definitions of W̃u(z)
and Wu(z, ε), we see that

dπG(ω)|Ẽu(z) : Ẽu(z)→ Eu(z)

realises an isomorphism. Then by (2.7), it is clear that dπG(ω)|TωW̃u(z) realises a conju-

gation between dϕ̃t(ω)|Ẽu(ω) and dϕt(z)|Eu(z). Similarly, dπG|TωW̃s(ω) realises an isomor-

phism TωW̃s(ω) ' Es(z), which conjugates dϕ̃t|Ẽs(ω) and dϕt|Es(z). Thus the lemma
will be proven if we show that we have the direct sum

Ẽs(z) = TωW̃s,tot(z) = TωW̃s(z)⊕ ker dπG(ω).
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To see this, take a local trivialization W̃s,tot(z)→ Ws(z, ε)×Gd−1(R2d−1) sending ω ∈ G
on (z, E0) for some E0 ∈ Gd−1(R2d−1) and such that W̃s(z) is sent to Ws(z, ε)× {E0}.
In these local coordinates one has the identifications

TωW̃s(z) ' Es(z)⊕ {0} and ker dπG(ω) ' {0} ⊕ TE0Gd−1(R2d−1).

As TωW̃s,tot(z) is identified with Es(z)⊕ TE0Gd−1(R2d−1), the proof is complete. �

We conclude this paragraph by noting that for any ω = (z, E) ∈ K̃u we have

dim Ẽu(ω) + dim Ẽs(ω) = dimEu(z) + dimEs(z) + dim ker dπG(ω)

= dimM − 1 + dim π−1
G (z)

= dimG− 1,

since dimG = dimM + dim π−1
G (z).

2.6. Vector bundles. We define the tautological vector bundle E → G by

E = {(ω, u) ∈ π∗G(TN) : ω ∈ G, u ∈ [ω]},
where [ω] = E denotes the (d − 1) dimensional subspace of TπG(ω)N represented by
ω = (z, E) and π∗G(TN) is the pullback bundle of TN. Also, we define the “vertical
bundle” F → G by

F = {(ω,W ) ∈ TG : dπG(ω) ·W = 0}.
It is a subbundle of the bundle TG→ G. The dimensions of the fibres Eω and Fω of E
and F over ω are given by

dim Eω = d− 1, dimFω = dim ker dπG(ω) = dim π−1
G (z) = d2 − d

for any ω ∈ G with πG(ω) = z. Finally, set

Ek,` = ∧kE∗ ⊗ ∧`F , 0 6 k 6 d− 1, 0 6 ` 6 d2 − d,
where E∗ is the dual bundle of E , that is, we replace the fibre Eω by its dual space E∗ω.
We consider E∗ and not E since the map dϕt(πG(ω)) : Eω → Eϕ̃t(ω) is expanding for

ω ∈ K̃u and t → +∞, whereas dϕt(πG(ω))−> : E∗ω → E∗ϕ̃t(ω) is contracting. Here −>

denotes the inverse transpose. Indeed, for ω = (z, Eu(z)) ∈ K̃u and u ∈ Eu(z)∗ (here
Eu(z)∗ is the dual vector space of Eu(z)) one has

〈dϕt(z)−>u, v〉 = 〈u, dϕ−t(ϕt(z))v〉, v ∈ dϕt(z)Eu(z) = Eu(ϕt(z)) ∈ Eϕ̃(t)(ω),

〈., .〉 being the paring on E∗ϕ̃t(ω) and Eϕ̃(t)(ω). Consequently, the map dϕt(πG(ω))−> is

contracting on E∗ω when ω ∈ K̃u, since dϕ−t(ϕt(z)) is contracting on Eu(ϕt(z)). This
fact will be convenient later for the proof of Lemma 3.1 below.

In what follows we use the notation ω = (z, η) ∈ G and u⊗ v ∈ Ek,`|ω. By using the

flow ϕ̃t, we introduce a flow Φk,`
t : Ek,` → Ek,` by setting

Φk,`
t (ω, u⊗ v) =

(
ϕ̃t(ω), bt(ω) ·

[(
dϕt(πG(ω))−>

)∧k
(u)⊗ dϕ̃t(ω)∧`(v)

])
, (2.8)
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where we set

bt(ω) = | det dϕt(πG(ω))|[ω]|1/2 · | det (dϕ̃t(ω)|ker dπG) |−1.

Here the determinants are taken with respect to any choice of smooth metrics gN on
N and the induced metrics gG on G, as follows. If ω = (z, E) ∈ G and t ∈ R, then the
number | det dϕt(z)|[ω]| is defined as the absolute value of the ratio

(dϕt(z)|[ω])
∧d−1 · µ[ω]

µ[ϕ̃t(ω)]

,

where µ[ω] = e1,[ω] ∧ · · · ∧ ed−1,[ω] ∈ ∧d−1[ω] (resp. µ[ϕ̃t(ω))] ∈ ∧d−1[ϕ̃t(ω)]) is a volume
element given by any basis e1,[ω], . . . , ed−1,[ω] of [ω] (resp. [ϕ̃t(ω)]) which is orthonormal
with respect to the scalar product induced by gN |[ω] (resp. gN |[ϕ̃t(ω)]). The number
| det (dϕ̃t(ω)|ker dπG) | is defined similarly. If we pass from one orthonormal basis to
another one, we multiply the terms by the determinant of a unitary matrix and the
absolute value of the above ratio is the same. On the other hand, for a periodic
point ωγ̃ = ϕ̃τ(γ)(ωγ̃) this number is simply | det dϕτ(γ)(πG(ωγ̃))|[ωγ̃ ]|. Taking local

trivializations of E∗ and F , we see that the action of Φk,`
t is smooth. Thus we have the

following diagram:

Ek,`
Φk,`t−−−→ Ek,`y y

G
ϕ̃t−−−→ GyπG yπG

N
ϕt−−−→ N

Now, consider the transfer operator

Φk,`,∗
−t : C∞(G, Ek,`)→ C∞(G, Ek,`)

defined by

Φk,`,∗
−t u(ω) = Φk,`

t

[
u(ϕ̃−t(ω))

]
, u ∈ C∞(G, Ek,`). (2.9)

Let Pk,` : C∞(G, Ek,`)→ C∞(G, Ek,`) be the generator of Φk,`,∗
−t , which is defined by

Pk,`u =
d

dt

(
Φk,`,∗
−t u

)∣∣∣∣
t=0

, u ∈ C∞(G, Ek,`).

Then we have the equality

Pk,`(fu) = (X̃f)u + f(Pk,`u), f ∈ C∞(G), u ∈ C∞(G, Ek,`). (2.10)

Fix any norm on Ek,`; this fixes a scalar product on L2(G, Ek,`). We also consider the
transfer operator Φk,`,∗ as a strongly continuous semigroup e−tPk,` , t > 0 with generator
Pk,` with domain in L2(G, Ek,`). The exponential ground of the derivatives of ϕ−t implies
an estimate

‖e−tPk,`‖L2(G,Ek,`)→L2(G,Ek,`) 6 Ceβt, t > C0 > 0,
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for some constants β > 0, C0 > 0. Next, we want to study the spectral properties of
the operator Pk,` applying the work of Dyatlov–Guillarmou [DG16]. For this purpose,

one needs to find a neighborhood Ṽu of K̃u such that the boundary ∂Ṽu has convexity

properties with respect to X̃ (see the condition (2.11) below with Ỹ replaced by X̃).
However, it is not clear that a such neighborhood exists, and one needs to modify

slightly X̃ outside a neighborhood of K̃u to obtain the desired properties. This is done
in §2.7 below.

2.7. Isolating blocks. By [CE71, Theorem 1.5], there exists an arbitrarily small open

neighborhood Ṽu of K̃u in G such that the following holds.

(i) The boundary ∂Ṽu of Ṽu is smooth,

(ii) The set ∂0Ṽu = {z ∈ ∂Ṽu : X̃(z) ∈ Tz(∂Ṽu)} is a smooth submanifold of

codimension 1 of ∂Ṽu,

(iii) There is ε > 0 such that for any z ∈ ∂Ṽu one has

X̃(z) ∈ Tz(∂Ṽu) =⇒ ϕ̃t(z) /∈ clos Ṽu, t ∈ ]−ε, ε[ \ {0},
where clos A denotes the closure of a set A.

In what follows we denote

Γ±(X̃) = {z ∈ Ṽu : ϕ̃t(z) ∈ Ṽu, ∓t > 0}.

A function ρ̃ ∈ C∞(clos Ṽu,R>0) will be called a boundary defining function for Ṽu if

we have ∂Ṽ = {z ∈ clos Ṽu : ρ̃(z) = 0} and dρ̃(z) 6= 0 for any z ∈ ∂Ṽu.
By [GMT21, Lemma 2.3] (see also [KSW21, Lemma 5.2]), we have the following

result.

Lemma 2.2. For any small neighborhood W̃0 of ∂0Ṽu in clos Ṽu, we may find a vector

field Ỹ on clos Ṽu which is arbitrarily close to X̃ in the C∞-topology, such that the
following holds.

(1) supp(Ỹ − X̃) ⊂ W̃0,

(2) Γ±(X̃) = Γ±(Ỹ ), where Γ±(Ỹ ) is defined as Γ±(X̃) by replacing the flow (ϕ̃t)

by the flow generated by Ỹ ,

(3) For any defining function ρ̃ of Ṽu and any ω ∈ ∂Ṽu we have

Ỹ ρ̃(ω) = 0 =⇒ Ỹ 2ρ̃(ω) < 0. (2.11)

From now on, we will fix Ṽu, W̃0 and Ỹ as above. By [DG16, Lemma 1.1] we may

find a smooth extension of Ỹ on G (still denoted by Ỹ ) so that for every ω ∈ G and
t > 0, we have

ω, ϕ̃t(ω) ∈ clos Ṽu =⇒ ϕ̃τ (ω) ∈ clos Ṽu for every τ ∈ [0, t]. (2.12)

Let (ψt)t∈R be the flow generated by Ỹ and let (ψ̃t) be the corresponding flow on G.

Set Γ̃± = Γ±(Ỹ ) for simplicity. The extended unstable/stable bundles Ẽ∗± ⊂ T ∗Ṽu over

Γ̃± are defined by

Ẽ∗±(ω) = {Ω ∈ T ∗ω Ṽu : Ψt(Ω)→t→±∞ 0},
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where Ψt is the symplectic lift of ψ̃t, that is

Ψt(ω,Ω) =
(
ψ̃t(ω), dψ̃t(ω)−> · Ω

)
, (ω,Ω) ∈ T ∗G, t ∈ R,

and −> denotes the inverse transpose. Then by [DG16, Lemma 1.10], the bundles

Ẽ∗±(ω) depend continuously on ω ∈ Γ̃±, and for any smooth norm | · | on T ∗G with
some constants C > 0, β > 0 independent of ω,Ω for t→ ∓∞ we have

|Ψ±t(Ω)| 6 Ce−β|t||Ω|, Ω ∈ E∗±(ω).

2.8. Dyatlov–Guillarmou theory. Let ∇k,` be any smooth connexion on Ek,`. Then
by (2.10) we have

Pk,` = ∇k,`

X̃
+ Ak,`

for some Ak,` ∈ C∞(G,End(Ek,`)). We define a new operator Qk,` by setting

Qk,` = ∇k,`

Ỹ
+ Ak,` : C∞(G, Ek,`)→ C∞(G, Ek,`).

Note that Qk,` coincides with Pk,` near K̃u since Ỹ coincides with X̃ near K̃u. Clearly,
we have

Qk,`(fu) = (Ỹ f)u + f(Qk,`u), f ∈ C∞(G), u ∈ C∞(G, Ek,`). (2.13)

Next, consider the transfer operator e−tQk,` : C∞(G, Ek,`)→ C∞(G, Ek,`) with generator
Qk,`, that is,

∂te
−tQk,`u = −Qk,`e

−tQk,`u, u ∈ C∞(G, Ek,`), t > 0.

As above, for some constant C > 0, we have

‖e−tQk,`‖L2(G,Ek,`)→L2(G,Ek,`) 6 CeC|t|, t > 0.

Then for for Re(s) > C, the resolvent (Qk,` + s)−1 on L2(G, Ek,`) is given by

(Qk,` + s)−1 =

∫ ∞
0

e−t(Qk,`+s)dt : L2(G, Ek,`)→ L2(G, Ek,`). (2.14)

Consider the operator

Rk,`(s) = 1Ṽu(Qk,` + s)−11Ṽu , Re(s)� 1,

from C∞c (Ṽu, Ek,`) to D′(Ṽu, Ek,`), where D′(Ṽu, Ek,`) denotes the space of Ek,`-valued dis-
tributions. Taking into account (2.11), (2.12) and (2.13), we see that the assumptions
(A1)–(A5) in [DG16, §0] are satisfied. We are in position to apply [DG16, Theorem 1]
in order to obtain a meromorphic extension of Rk,`(s) to the whole plane C. Moreover,
according to [DG16, Theorem 2], for every pole s0 ∈ C in a small neighborhood of s0

one has the representation

Rk,`(s) = RH,k,`(s) +

J(s0)∑
j=1

(−1)j−1(Qk,` + s0)j−1Πk,`
s0

(s− s0)j
, (2.15)

where RH,k,`(s) : C∞c (Ṽu, Ek,`)→ D′(Ṽu, Ek,`) is a holomorphic family of operators near

s = s0 and Πk,`
s0

: C∞c (Ṽu, Ek,`) → D′(Ṽu, Ek,`) is a finite rank projector. Denote by



18 Y. CHAUBET AND V. PETKOV

KRH,k,`(s) and KΠk,`s0
the Schwartz kernels of the operators RH,k,`(s) and Πk,`

s0
, respec-

tively. Recall the definition of the twisted wavefront set

WF′(A) = {(x, ξ, y,−η) : (x, ξ, y, η) ∈WF(KA)},
KA being the distributional kernel of the operator A. By [DG16, Lemma 3.5], we have

WF′(KRH,k,`
(s)) ⊂ ∆(T ∗Ṽu) ∪Υ+ ∪ (Ẽ∗+ × Ẽ∗−). (2.16)

Here ∆(T ∗Ṽu) is the diagonal in T ∗(Ṽu × Ṽu),

Υ+ = {(Ψt(ω,Ω), ω,Ω) : (ω,Ω) ∈ T ∗Ṽu, t > 0, 〈Ỹ (ω),Ω〉 = 0},

while the bundles Ẽ∗± and flow Ψt are defined in §2.7. Finally, we have

supp(KΠk,`s0
) ⊂ Γ+ × Γ− and WF′(KΠk,`s0

(s)) ⊂ Ẽ∗+ × Ẽ∗−. (2.17)

3. The dynamical zeta function for the Neumann problem

In this section we prove that the function ηN admits a meromorphic continuation
to the whole complex plane, by relating ηN(s) to the flat trace of the cut-off resolvent
Rk,`(s).

3.1. The flat trace. First, we recall the definition of the flat trace for operators acting
on vector bundles. Consider a manifold V , a vector bundle E over V and a continuous
operator T : C∞c (V, E)→ D′(V, E). Fix a smooth density µ on V ; this defines a pairing
〈·, ·〉 on C∞c (V, E)× C∞c (V, E∗). Let

KT ∈ D′(V × V, E � E∗)
be the Schwartz kernel of T with respect to this pairing, which is defined by

〈KT, π
∗
1u⊗ π∗2v〉 = 〈Tu,v〉, u ∈ C∞c (V, E), v ∈ C∞c (V, E∗),

where the pairing on D′(V × V, E � E∗)× C∞c (V × V, E � E∗) is taken with respect to
µ × µ. Here, the bundle E � E∗ = π∗1E ⊗ π∗2E∗ → V is given by the tensor product of
the pullbacks π∗1E , and π∗2E∗, where π1, π2 : V × V → V denote the projections over
the first and the second factor, respectively.

Denote by ∆ = {(x, x) : x ∈ V } ⊂ V × V the diagonal in V × V and consider the
inclusion map ι∆ : ∆→ V × V, (x, x) 7→ (x, x). Assume that

WF′(KT) ∩∆(T ∗V \ {0}) = ∅, (3.1)

where ∆(T ∗V \ {0}) is the diagonal in (T ∗(V ) \ {0})× (T ∗(V ) \ {0}). Then by [Hör90,
Theorem 8.2.4], the pull-back

ι∗∆KT ∈ D′(V, End(E))

is well defined, where we used the identification ι∗∆(E � E∗) ' E ⊗ E∗ ' End(E). If KT

is compactly supported we define the flat trace of T by

tr[ T = 〈trEnd(E)(ι
∗
∆KT), 1〉,

where again the pairing is taken with respect to µ. It is not hard to see that the flat
trace does not depend on the choice of the density µ.
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3.2. The flat trace of cut-off resolvent. We introduce a cut-off function χ̃ ∈
C∞c (Ṽu) such that χ̃ ≡ 1 on K̃u. For % ∈ C∞c (R+ \ {0}) define

Tk,`
% u :=

(∫ ∞
0

%(t)χ̃(e−tQk,`u)χ̃dt

)
, u ∈ C∞(G, Ek,`).

We may apply the Guillemin trace formula [Gui77, §2 of Lecture 2] (we refer to [BSW21,
Lemma 3.1] for a detailed presentation based on the argument of [DZ16, Appendix B]),
which implies that the flat trace of Tk,`

% is well defined, and

tr[(Tk,`
% ) =

∑
γ̃

%(τγ)τ
](γ) tr(αk,`γ̃ )

| det(Id−P̃γ)|
, (3.2)

where the sum runs over all periodic orbits γ̃ of (ϕ̃t). Here,

P̃γ = dϕ̃−τ(γ)(ωγ̃)
∣∣
Ẽu(ωγ̃)⊕Ẽs(ωγ̃)

is the linearized Poincaré map of the closed orbit

t 7→ γ̃(t) = (γ(t), Eu(γ(t)))

of the flow (ϕ̃t) and ωγ̃ ∈ Im(γ̃) is any reference point taken in the image of γ̃. Note
that if we take another point ω′γ̃ ∈ Im(γ̃), then the map dϕ̃−τ(γ)(ω

′
γ̃) is conjugated

to dϕ̃−τ(γ)(ωγ̃) by dϕ̃t1(ωγ̃), where t1 ∈ R is chosen so that ϕ̃t1(ω
′
γ̃) = ωγ̃. Hence the

determinant det(Id−Pγ) does not depend on the reference point ωγ̃ and is well defined.

The number tr(αk,`γ̃ ) is the trace of the linear map

αk,`ωγ̃ ,τ(γ) : Ek,`|ωγ̃ → Ek,`|ωγ̃ ,

where for t ∈ R and ω ∈ G, we denote by

αk,`ω,t : Ek,`|ω → Ek,`|ϕ̃t(ω)

the restriction of the map Φk,`
t : Ek,` → Ek,` to the fiber Ek,`|ω. Again, if we take another

reference point ω′γ̃, the map αk,`ω′
γ̃
,τ(γ) is conjugated to αk,`ωγ̃ ,τ(γ), hence its trace depends

only on γ̃, and this justifies the notation tr(αk,`γ̃ ).

Next, we follow the strategy of [BSW21, §4.1] which is based on that used in [DZ16,
§4] for Anosov flows on closed manifolds to compute the flat trace of the (shifted)
resolvent defined below. We may apply formula (3.2) with the functions %s,T (t) =
e−st%T (t), where %T ∈ C∞c (R+) satisfies supp %T ⊂ [ε/2, T + 1] for 0 < ε < d0 =
minγ∈P τ(γ) small and %T ≡ 1 on [ε, T ]. Then taking the limit T → ∞, we obtain,
with (2.14) in mind,

tr[ Rk,`
ε (s) =

∑
γ̃

e−sτ(γ)τ ](γ) tr(αk,`γ̃ )

| det(Id−P̃γ)|
, Re(s)� 1. (3.3)

Here for Re(s) large enough and ε > 0 small, we set

Rk,`
ε (s) := χ̃e−ε(s+Qk,`)(Qk,` + s)−1χ̃,
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and ε is chosen so that e−εQk,` supp(χ̃) ⊂ Ṽu, so that Rk,`
ε (s) is well defined. The equal-

ity (3.3) is exactly Equation (4.21) in [BSW21], and we refer to the aforecited work for a
detailed proof of this identity. Note that the flat trace tr[ Rk,`

ε (s) is well defined thanks
to the information of the wavefront set WF′(KRk,`

ε (s)) obtained from (2.16), together

with the multiplication properties satisfied by wavefront sets (see [Hör90, Theorem
8.2.14]).

Next, one states the following result, similar to that in [FT17, Section 2]. This crucial
lemma explains the reason to introduce the bundles Ek,`. For the sake of completeness,
we present a detailed proof.

Lemma 3.1. For any periodic orbit γ̃ related to a periodic orbit γ, we have

1

| det(Id−P̃γ)|

d−1∑
k=0

d2−d∑
`=0

(−1)k+` tr(αk,`γ̃ ) = | det(Id−Pγ)|−1/2.

Proof. Let γ(t) be a periodic orbit and let γ̃(t) = (γ(t), Eu(γ(t)), ωγ̃ ∈ γ̃, z ∈ γ. Set

Pγ,u = dϕ−τ(γ)(z)|Eu(z), Pγ,s = dϕ−τ(γ)(z)|Es(z),

Pγ,⊥ = dϕ̃−τ(γ)(ωγ̃)|ker dπG(ω), P−1
γ,⊥ = dϕ̃−τ(γ)(ωγ̃)

−1|ker dπG(ω).

The linearized Poincaré map P̃γ of the closed orbit γ̃ satisfies

det(Id−P̃γ) = det
(

Id−dϕ̃−τ(γ)|Ẽs(ω)⊕Ẽu(ω)

)
= det (Id−Pγ) det (Id−Pγ,⊥)

(3.4)

since Ẽs(ω) ' Es(z) ⊕ ker dπG(ω) and Ẽu(ω) ' Eu(z) by Lemma 2.1. Recall the well
known formula

det(Id−A) =
k∑
j=0

(−1)j tr∧jA

for any endomorphism A of a k-dimensional vector space. Moreover, notice that

tr(αk,`γ̃ ) = tr∧kPγ,u tr∧`P−1
γ,⊥,

since by (2.8), αk,`γ̃ coincides with the map

∧k
[
dϕτ(γ)(πG(ωγ̃))

−>]⊗ ∧` [dϕτ(γ)(ωγ̃)
]

: ∧kE∗|ωγ̃ ⊗ ∧
`F|ωγ̃ → ∧

kE∗|ωγ̃ ⊗ ∧
`F|ωγ̃ .

Therefore, one gets

d2−d∑
`=0

d−1∑
k=0

(−1)k+`tr(αk,`γ̃ )

= bτ(γ)(ωγ̃)

(
d−1∑
k=0

(−1)k tr∧kPγ,u

)(
d2−d∑
`=0

(−1)` tr∧`P−1
γ,⊥

)
= | det(Pγ,u)|−1/2| det(Pγ,⊥)| det(Id− Pγ,u) det(Id− P−1

γ,⊥).

(3.5)
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Here we have used the equality

bτ(γ)(ωγ̃) = | det dϕτ(γ)(πG(ωγ̃))|[ωγ̃ ]|1/2 · | det
(
dϕ̃τ(γ)(ωγ̃)|ker dπG

)
|−1

= | det(Pγ,u)|−1/2| det(Pγ,⊥)|

which holds because Pγ,u and Pγ,⊥ are defined with dϕ−t and dϕ̃−t, respectively. There-
fore (3.4) yields∑

k,`

(−1)k+`
tr(αk,`γ̃ )

| det(Id−P̃γ)|
=

det(Id−Pγ,u) det(Id−P−1
γ,⊥)| det(Pγ,u)|−1/2

| det(Id−Pγ)|| det(Id−Pγ,⊥)|| det(Pγ,⊥)|−1
. (3.6)

Since Pγ is a linear symplectic map, we have

det(Id−P−1
γ,s ) = det(Id−Pγ,u), det(Pγ,s) = det(P−1

γ,u),

and one deduces

| det(Id−Pγ)| = | det(Id−Pγ,u)|| det(Id−Pγ,s)|
= | det(Pγ,s)|| det(Id−Pγ,u)|| det(Id−P−1

γ,s )|
= | det(Pγ,u)|−1| det(Id−Pγ,u)|2.

For t > 0 the map dϕ̃t = (dϕ̃−t)
−1 is contracting on ker dπG ⊂ Ẽs(ωγ̃) (resp. dϕ−t is

contracting on Eu(z)) and these contractions yield det(Id−P−1
γ,⊥) > 0 (resp. det(Id−Pγ,u) >

0). Thus the terms involving Pγ,⊥ in (3.6) cancel and since

| det(Id−Pγ)|−1/2 = | det(Pγ,u)|1/2 det(Id−Pγ,u)−1,

the right hand side of (3.6) is equal to | det(Id−Pγ)|−1/2. �

3.3. Meromorphic continuation of ηN. From Lemma 3.1 and (3.3), we deduce that
for Re(s)� 1, we have

ηN(s) =
d−1∑
k=0

d2−d∑
`=0

(−1)k+` tr[ Rk,`
ε (s),

where ηN(s) is defined by

ηN(s) =
∑
γ

τ ](γ)e−τ(γ)s

| det(1− Pγ)|1/2
.

Since for every k, ` the family s 7→ Rk,`
ε (s) extends to a meromorphic family on the

whole complex plane, so does s 7→ ηN(s). Indeed, it follows from the proof of [DG16,
Lemma 3.2] that s 7→ KRk,`

ε (s) is continuous as a map1

C \ Res(Rk,`
ε )→ D′Γ(G×G, Ek,` � E∗k,`).

1This follows from the fact that the estimates on the wavefront set of Rk,`
ε (s) given in [DG16,

Lemma 3.5] are locally uniform with respect to s ∈ C.
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Here for s /∈ Res(Rk,`
ε ) the distribution KRk,`

ε (s) is the Schwartz kernel of Rk,`
ε (s) and

(see (2.16) for the notation)

Γ = ∆ε ∪Υ+,ε ∪ Ẽ∗+ × Ẽ∗−,

where ∆ε = {(Ψε(ω,Ω), ω,Ω) : (ω,Ω) ∈ T ∗(Ṽu) \ {0}} and

Υ+,ε = {(Ψt(ω,Ω), ω,Ω) : (ω,Ω) ∈ T ∗(Ṽu) \ {0}, t > ε, 〈Ỹ (ω),Ω〉 = 0},
while D′Γ(G × G, Ek,` � E∗k,`) is the space of distributions valued in Ek,` � E∗k,` whose
wavefront set is contained in Γ. This space is endowed with its usual topology (see
[Hör90, §8.2]). Thus, outside the set of poles Res(Rk,`

ε ), we apply the procedure with
a flat trace. In particular, s 7→ tr[ Rk,`

ε (s) is continuous on C \ Res(Rk,`
ε ) by [Hör90,

Theorem 8.2.4]. Finally, Cauchy’s formula implies that this map is meromorphic on
C and this completes the proof that the Dirichlet series ηN(s) admits a meromorphic
continuation in C.

Next, we establish that ηN(s) has simple poles with integer residues. To do this,
we may proceed as in [DG16, §4]. For the sake of completeness we reproduce the
argument. Let s0 ∈ Res(Rk,`) for some k, `. Recalling the development (2.15), it is
enough to show that

tr[
(
χ̃e−ε(s0+Qk,`)

[
(Qk,` + s0)j−1Πk,`

s0

]
χ̃
)

= 0, j > 2, (3.7)

and
tr[
(
χ̃e−ε(s0+Qk,`)Πk,`

s0
χ̃
)

= rank Πk,`
s0
. (3.8)

In the following we fix k and `. We may write

Πk,`
s0

=
m∑
i=1

ui ⊗ vi,

where ⊗ denotes the Hilbert tensor product and by (2.17) for i = 1, . . . ,m we have

ui ∈ D′(Ṽu, Ek,`), supp(ui) ⊂ Γ+, WF′(ui) ⊂ Ẽ∗+,

vi ∈ D′(Ṽu, E∗k,`), supp(vi) ⊂ Γ−, WF′(vi) ⊂ Ẽ∗−.
(3.9)

The relations
Ẽ∗+ ∩ Ẽ∗− ∩ (T ∗(Ṽ ) \ {0}) = ∅,

make possible to define the pairing 〈ui,vp〉 on Ek,`×E∗k,` for i, p = 1, . . . ,m which yields

a distribution on Ṽu. This distribution is compactly supported since

supp ui ∩ supp vp ⊂ Γ+ ∩ Γ− = K̃u.

The family (ui) is a basis of the range of Πk,`
s0
. By definition of the flat trace and the

information on the wavefront sets, we can write

tr[
(
χ̃e−ε(s0+Qk,`)

[
(Qk,` + s0)j−1Πk,`

s0

]
χ̃
)

=
m∑
i=1

∫
Ṽu

〈χ̃e−ε(s0+Q)(Qk,` + s0)j−1ui, χ̃vi〉.
(3.10)
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Here the integrals make sense taking into account the estimates of the supports and
the wavefront sets of ui and vp mentioned above. Since Πk,`

s0
◦ Πk,`

s0
= Πk,`

s0
, the family

(vp) is dual to the basis (ui) in the sense that∫
Ṽu

〈ui,vp〉 = δip, 1 6 i, p 6 m, (3.11)

where δip are the Kronecker symbols. Introduce

C
(j)
s0,k,`

=
{
u ∈ D′(Ṽu, Ek,`) : supp u ⊂ Γ+, WF(u) ⊂ Ẽ∗+, (Qk,` + s0)ju = 0

}
.

Then, since χ̃ = 1 near K̃u, one deduces that χ̃e−ε(s0+Qk,`)(Qk,` + s0)Πk,`
s0
χ̃ maps

χ̃C
(j+1)
s0,k,`

→ χ̃C
(j)
s0,k,`

, and χ̃C
(1)
s0,k,`

→ {0}, j > 1.

This fact and (3.11) show that (3.7) holds. To prove (3.8), we write∑
i

∫
Ṽu

〈χ̃e−ε(s0+Qk,`)ui, χ̃vi〉

=
∑
i

∫
Ṽu

〈ui,vi〉 −
∑
i

∫ ε

0

dt

∫
Ṽu

〈
χ̃e−t(s0+Qk,`)(Qk,` + s0)ui, χ̃vi

〉
.

Now, we replace ε by t in (3.7) for any t ∈ [0, ε], and we obtain that the last sum in
the right hand side of the above equation vanishes. Finally, applying (3.11), we obtain
(3.8).

4. The dynamical zeta function for particular rays

In this section we adapt the above construction to prove the following result.

Theorem 4. Let q ∈ N>1. The function ηq(s) defined by

ηq(s) =
∑

γ∈P, m(γ)∈qN

τ ](γ)e−sτ(γ)

| det(Id− Pγ)|1/2
, Re(s)� 1,

where the sum runs over all periodic rays γ with m(γ) ∈ qN, admits a meromorphic
continuation to the whole complex plane with simple poles and residues valued in Z/q.

Note that for large Re(s) we have the formula

ηD(s) = 2η2(s)− ηN(s). (4.1)

In particular, Theorem 4 implies that ηD(s) also extends meromorphically to the whole
complex plane, since ηN(s) does by the preceding section. In particular, we obtain
Theorem 1 since 2η2(s) has simple poles with residues in Z.
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4.1. The q-reflection bundle. For q > 2 define the q-reflection bundle Rq →M by

Rq =
([
SRd \

(
π−1(D̊) ∪ Dg

)]
× Rq

)/
≈, (4.2)

where the equivalence classes of the relation ≈ are defined as follows. For (x, v) ∈
SRd \

(
π−1(D̊) ∪ Dg

)
and ξ ∈ Rq, we set

[(x, v, ξ)] = {(x, v, ξ), (x, v′, A(q) · ξ)} if (x, v) ∈ Din, (x, v′) ∈ Dout,

where A(q) is the q × q matrix with entries in {0, 1} given by

A(q) =


0 1
1 0

. . . . . .
1 0

 .

Clearly, the matrix A(q) yields a shift permutation

A(q)(ξ1, ξ2, ..., ξq) = (ξq, ξ1, ..., ξq−1).

This indeed defines an equivalence relation since (x, v′) ∈ Dout whenever (x, v) ∈ Din.
Note that

A(q)q = Id, trA(q)j = 0, j = 1, . . . , q − 1. (4.3)

Let us describe the smooth structure of Rq, using the charts of M and the notations
of §2.2. For z? ∈ Din, let Uz? = B(0, δ) = {x ∈ Rd−1 : |x| < δ} be a neighborhood of 0
used for the definition of Fz? (see §2.2) and let

Ψ−1
z? : Oz? →]− ε, ε[×B(0, δ)×B(0, δ) = Wz?

be a chart. Then the bundleRq →M can be defined by defining its transition maps, as
follows. Let W = Ψ−1(B \π−1(∂D)) be a chart. In the smooth coordinates introduced
in §2.2, we have Wz? ∩W = W+ tW−, where

W+ = ]0, ε[×B2d−2(0, δ) and W− = ]−ε, 0[×B2d−2(0, δ).

Then we define the transition map αz? : Wz? ∩W → GL(Rq) of the bundle Rq with
respect to the pair of charts (Ψz? ,Ψ) to be the locally constant map defined by

αz?(z) =

{
Id if z ∈ W−,
A(q) if z ∈ W+.

For z?, z
′
? ∈ Din, the transition map of Rq for the pair of charts (Ψz? ,Ψz′?) is declared

to be constant and equal to Id on Wz? ∩Wz′? . In this way we obtain a smooth bun-
dle Rq over M , which is clearly homeomorphic to the quotient space (4.2). Since the
transition maps of Rq are locally constant, there is a natural flat connexion dq on Rq

which is given in the charts by the trivial connexion on Rq.

Consider a small smooth neighborhood V of K. As in §2.4, we embed V into a
smooth compact manifold without boundary N , and we fix an extension of Rq to N
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(this is always possible if we choose N to be the double manifold of V ). Consider any
connexion ∇q on the extension of Rq which coincides with dq near K, and denote by

Pq,t(z) : Rq(z)→ Rq(ϕt(z))

the parallel transport of ∇q along the curve {ϕτ (z) : 0 6 τ 6 t}. We have a smooth
action of ϕqt on Rq which is given by the horizontal lift of ϕt

ϕqt (z, ξ) = (ϕt(z), Pq,t(z) · ξ), (z, ξ) ∈ Rq.

As in (3.2) we see that for a periodic orbit γ we define Pq,γ as an endomorphism on
Rq. From (4.3), and the fact that ∇q coincides with dq near K, we easily deduce that
for any periodic orbit γ = (ϕτ (z))τ∈[0,τ(γ)], we have

trPq,γ =

{
q if m(γ) = 0 mod q,

0 if m(γ) 6= 0 mod q.
(4.4)

4.2. Transfer operators acting on G. Now, consider the bundle

Eqk,` = Ek,` ⊗ π∗GRq,

where π∗GRq is the pullback of Rq by πG and Ek,` is defined in §2.6, so that π∗GRq → G

is a vector bundle over G. We may lift the flow ϕqt to a flow Φk,`,q
t on Eqk,` which is

defined locally near K̃u by

Φk,`,q
t (ω, u⊗ v ⊗ ξ)

=
(
ϕ̃t(ω), bt(ω) ·

[(
dϕt(πG(ω))−>

)∧k
(u)⊗ (dϕ̃t(ω))∧`(v)⊗ Pq,t(z) · ξ

])
for any ω = (z, E) ∈ G, u ⊗ v ⊗ ξ ∈ Eqk,`(ω) and t ∈ R. Here bt(ω) is defined in §2.6.

As in §2.8, we consider a smooth connexion ∇k,`,q = ∇k,` ⊗ π∗G∇q on Eqk,`. Define the
transfer operator

Φk,`,q,∗
−t : C∞(G, Eqk,l)→ C∞(G, Eqk,`)

by

Φk,`,q,∗
−t u(ω) = Φk,`,q

t [u(ϕ̃−t(ω)], u ∈ C∞(G, Eqk,`).
Then the operator

Pk,`,q =
d

dt

(
Φk,`,q,∗
−t

)∣∣∣∣
t=0

, u ∈ C∞(G, Eqk,`).

which is defined near K̃u, can be written locally as ∇k,`,q

X̃
+ Ak,`,q for some Ak,`,q ∈

C∞(Ũu,End Eqk,`) which is defined in some small neighborhood Ũu of K̃u. Next, we

choose some Bk,`,q ∈ C∞(G,End Eqk,`) which coincides Ak,`,q near K̃u. We consider Ṽu

and Ỹ as in §2.7, and set

Qk,`,q = ∇k,`,q

Ỹ
+ Bk,`,q : C∞(G, Eqk,`)→ C∞(G, Eqk,`).
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4.3. Meromorphic continuation of ηq(s). For χ̃ ∈ C∞c (Ṽu) such that χ̃ ≡ 1 near

K̃u, we define

Rk,`,q
ε (s) := χ̃e−ε(Qk,`,q+s)(Qk,`,q + s)−1χ̃

Repeating the argument of the preceding section, one can obtain an analog of (3.3)

where the factor tr(αk,`γ̃ ) must be replaced by tr(αk,`γ̃ ) tr(Pq,γ). This leads a meromorphic

continuation of Rk,`,q
ε (s).

On the other hand, by (4.4) one gets tr(Pq,γ) = 1qN(m(γ)). In particular, proceeding
exactly as in the the preceding section, we obtain that for Re(s) large enough,∑

k,`

(−1)k+` tr[ Rk,`,q
ε (s) = q

∑
γ∈P

m(γ)∈qN

τ ](γ)e−sτ(γ)

| det(Id− Pγ)|1/2
. (4.5)

Therefore, repeating the argument of §3, we establish a meromorphic continuation of
the function s 7→ ηq(s). Finally, by using (4.5), we may proceed exactly as in §3.3 to
show that qηq has integer residues. This completes the proof of Theorem 4.

5. The modified Lax–Phillips conjecture for real analytic obstacles

In this section, we assume that the obstacles D1, . . . , Dr have real analytic boundary.
Then the smooth structure on M defined in §2.2 induces an analytic structure on M .
Indeed, with notations of §2.2, the local parametrizations Fz? of Din can be chosen
to be real analytic, as Din is a real analytic submanifold of SRd−1. This makes the
transition maps (2.3) real analytic, and thus we obtain a real analytic structure on M .
In the charts defined by Ψz? and Ψ (see §4.1), the billiard flow ϕt is a translation and it
defines a real analytic flow. Of course, the Grassmannian bundle G→M also becomes
real analytic. Consequently, the lifted flow ϕ̃t on G, which is defined by (2.6), is real
analytic as well.

Consider the bundles Eqk,` → G defined in §4.2 for q > 2, 1 6 k 6 d − 1 and

1 6 ` 6 d2 − d. In the case q = 1 the bundles E1
k,` → G are isomorphic to Ek,`, Ek,`

being the bundles defined in §3. As before, we naturally extend the flow ϕ̃t to a flow
Φk,`,q
t (which is non complete) on Eqk,`. We set

E+
q =

⊕
k+` even

Eqk,` and E−q =
⊕

k+` odd

Eqk,`.

Define the flows Φ+
t,q and Φ−t,q, acting respectively on the bundles E+

q and E−q , by

Φ+
t,q =

⊕
k+` even

Φk,`,q
t and Φ−t,q =

⊕
k+` odd

Φk,`,q
t .

Then Φ±t,q is a virtual lift of ϕ̃t to the virtual bundles E±q , in the sense of [Fri95, p.
176]. Also, following [Fri95, p. 176], given a periodic ray γ, one defines χγ(E±q ) =
χγ(E+

q ) − χγ(E−q ). More precisely, given a point ω = (z, E) ∈ G, z ∈ γ, and a bundle
ξ → G over G, one considers the transformation Φτ(γ) : ξω → ξω, where ξω is the fibre
over ω and Φt is the lift of the flow ϕ̃t to ξ. Then we set χγ(ξ) = tr Φτ(γ). For a period
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ray γ related to a primitive periodic ray γ] one defines µ(γ) ∈ N determined by the
equality τ(γ) = µ(γ)τ(γ]).

After this preparation one introduces the zeta function

ζq(s) := exp
(
−1

q

∑
γ̃

χγ(E±q )

µ(γ)| det(Id− P̃γ)|
e−sτ(γ)

)
, Re(s)� 1.

This function corresponds exactly to the flat-trace function s 7→ T [(s) introduced by
Fried [Fri95, p. 177]. On the other hand, one has

χγ(E±q ) =
∑
k,`

(−1)k+`tr Φk,`,q
τ(γ)(ωγ̃).

According to the analysis of §3 for the function ζN(s), one deduces that

d

ds
log ζ1(s) =

∑
γ∈P

τ(γ])e−sτ(γ)

| det(Id− Pγ)|1/2
= ηN(s), Re s� 1.

Similarly, the argument of §4 implies

d

ds
log(ζ2(s)2) = 2

∑
γ∈P

m(γ)∈2N

τ(γ])e−sτ(γ)

| det(Id− Pγ)|1/2
= 2η2(s), Re s� 1.

Consequently, the representation (4.1) yields

ηD(s) = − d

ds
log
(ζ2(s)2

ζ1(s)

)
, Re s� 1. (5.1)

For obstacles with real analytic boundary the flow ϕ̃t is real analytic and the bundles
E±q are real analytic, too.

For convenience of the reader, we recall the definition of the order of a function f
meromorphic on the complex plane (see for instance [Hay64]). For r > 0, denote by
n(r, f) the number of poles of f in the disk {|z| 6 r} counted with their multiplicity.
Introduce the (Nevalinna) counting function

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r.

Let log+ : R→ R+ be the function defined by

log+ x =

{
log x if x > 1,

0 if x 6 1.

The proximity function m(r, f) is defined by

m(r, f) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ
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and T (r, f) = N(r, f) + m(r, f) is called the (Nevalinna) characteristic of f . Finally,
the order ρ(f) of f is defined by

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
.

We are now are in position to apply the principal result of Fried [Fri95, Theorem
p. 180] (see also pp. 177–178) saying that the zeta functions s 7→ ζk(s), k = 1, 2, are
entire functions with finite orders ρ(ζk). Thus ζ2

2/ζ1 is a meromorphic function with
order max{ρ(ζ1), ρ(ζ2)}.

Proof of Theorem 3. Denote by {µj} ⊂ C the set of resonances for the wave equation
in the domain Rd \ D, with Dirichlet boundary conditions. Our purpose is to prove
that there exists α > 0 such that

]{µj : 0 < Imµj 6 α} =∞.
By the work of Ikawa [Ika88b, Ika90a] and a modification of its proof to cover the case d
even (see Appendix B), it is sufficient to show that the Dirichlet series ηD(s) cannot be
continued as an entire function on C, that is, ηD(s) has at least one pole. We proceed by
contradiction and assume that ηD(s) is an entire function. Applying the representation
(5.1), this means that ζ2(s)2/ζ1(s) has neither poles nor zeros. As we have mentioned
above, this function has finite order, so by the Hadamard factorisation theorem we
deduce that ζ2(s)2/ζ1(s) = exp(Q(s)) for some polynomial Q(s). This implies that
ηD(s) = −Q′(s) is a polynomial, which is impossible. Indeed, since ηD(s) → 0 as
Re(s) → +∞, this implies that Q′(s) must be the zero polynomial. By uniqueness of
the development of an absolutely convergent Dirichlet series of the form

∑
n ane−λns

[Per08], this leads to a contradiction. �

Appendix A. Hyperbolicity of the billiard flow

In this appendix we show that the non-grazing flow (φt) defined in §2.1 is uniformly
hyperbolic on the trapped set Ke. Throughout this section we will work with the
Euclidian metric. As it was mentioned in §2.4, we can obtain the uniform hyperbolicity
of the flow (ϕt) on K in the smooth model from that for (φt) on Ke. The flow (φt) is

hyperbolic on Ke if for every z = (x, v) ∈ B̊ ∩Ke we have a splitting

TzRd = RX(z)⊕ Es(z)⊕ Eu(z),

where X(z) = v and Es(z)/Eu(z) are stable/unstable spaces such that dφt(z) maps

Es/u(z) onto Es/u(φt(z)) whenever φt(z) ∈ B̊ ∩ Ke, and if for some constants C >
0, ν > 0 independent of z ∈ Ke, we have

‖dφt(z) · v‖ 6

{
Ce−νt‖v‖, v ∈ Es(z), t > 0,

Ce−ν|t|‖v‖, v ∈ Eu(z), t 6 0.
(A.1)

First, we consider the case of periodic points. Our purpose is to define the un-
stable and stable manifolds Eu(z) and Es(z) at a periodic point z, and to estimate
the norm of dφt(z)|Eb(z) for b = u, s. Consider a periodic ray γ with reflection points
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qi−1

qi

Πi−1

Πi

u

wi−1

v

p

`(u, v)

`′(u, v)

u′

wiv′

Figure 2. The map Ψi : (u, v) 7→ (u′, v′)

zi = (qi, ωi), qi ∈ ∂D, ωi ∈ Sd−1, i = 0, . . . ,m(γ) = m. We will apply the representa-
tion of the Poincaré map established in Theorem 2.3.1 and Proposition 2.3.2 in [PS17].
To do this, we recall some notations given in Section 2 of [PS17]. Let Πi ⊂ Rd be
the plane passing thought qi and orthogonal to the line qiqi+1 and let Π′i be the plan
passing thought qi and orthogonal to ωi−1. For j = i (modm) we set Πj = Πi, qj = qi.
Set λi = ‖qi−1 − qi‖ and let σi be the symmetry with respect to the tangent plane
αi = Tqi∂D. Clearly,

σi(ωi) = ωi+1, σi(Π
′
i) = Πi, Π0 = Πm.

We identify Πi−1 and Π′i by using a translation along the line determined by the segment
[qi−1, qi] and we will write σi(Πi−1) = Πi.

We may identify Πi×Πi with Σzi = Tzi(TRd)/Ezi , where Ezi is the two-dimensional
space spanned by ωi and the cone axis at zi. Given (u, v) ∈ Πi−1 × Πi−1 sufficiently
close to (0, 0), consider the line `(u, v) passing through u and having direction ωi−1 + v
(the point v is identified with the vector v). Then `(u, v) intersects ∂D at a point
p = p(u, v) close to qi. Let `′(u, v) be the line symmetric to `(u, v) with respect to the
tangent plane to ∂D at p and let u′ ∈ Πi be the intersection point of `′(u, v) with Πi.
There exists a unique v′ ∈ Πi for which ωi + v′ has the direction of `′(u, v). Thus we
get a map

Ψi : Πi−1 × Πi−1 3 (u, v) 7−→ (u′, v′) ∈ Πi × Πi

defined for (u, v) in a small neighborhood of (0, 0) (see Figure 2). The smoothness of
the billiard ball map B introduced in §2.4 implies the smoothness of Ψi. Next consider
the second fundamental form S(ξ, η) = 〈Gi(ξ), η〉 for D at qi, where

Gi = dnj(qi) : αi −→ αi
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is the Gauss map. Introduce a symmetric linear map ψ̃i on Πi defined by for ξ, η ∈ Π′i
by

〈ψ̃iσi(ξ), σi(η)〉 = −2〈ωi−1, nj(qi)〉〈Gi(πi(ξ)), πi(η)〉,
where 〈., .〉 denotes the scalar product in Rd and πi : Π′i −→ αi is the projection on αi
along Rωi−1.

Notice that the non-eclipse condition (1.1) implies that there exists β0 ∈ ]0, π/2[
depending only of D such that for all incoming directions ωi−1 and all reflexion points
qi ∈ ∂Dj, one has

−〈ωi−1, nj(qi)〉 = 〈ωi, nj(qi)〉 > cos β0 > 0.

Consequently, the symmetric map ψ̃i has spectrum included in [µ1, µ2] with 0 < µ1 < µ2

depending only of κ = cos β0 and the sectional curvatures of ∂D. Finally, define the
symmetric map

ψi = s−1
i ψ̃isi : Πm −→ Πm

with si = σi ◦ σi−1 ◦ · · · ◦ σ1. By Theorem 2.3.1 in [PS17], the map dΨi(0, 0) has the
form

dΨi(0, 0) =

(
I λiI

ψ̃i I + λiψ̃i

)(
σi 0
0 σi

)
,

and the linearized Poincaré map Pγ related to γ is given by

Pγ = d(Ψm ◦ · · · ◦Ψ1)(0, 0) : Π0 × Π0 −→ Π0 × Π0,

which implies

Pγ =

(
sm 0
0 sm

)(
I λmI
ψm I + λmψm

)
· · ·
(
I λ1I
ψ1 I + λ1ψ1

)
.

Now we repeat without changes the argument of Proposition 2.3.2 in [PS17]. For
k = 0, 1, . . . ,m, consider the spaceMk of linear symmetric non-negative definite maps
M : Πk −→ Πk. Next, let Mk(ε) ⊂Mk be the space of maps such that M > εI with
ε > 0. To study the spectrum of Pγ, consider the subspace

L0 = {(u,M0u) : u ∈ Π0}, M0 ∈M0,

which is Lagrangian with respect to the natural symplectic structure on Π0 × Π0. By
the action of the map dΨ1(0, 0), the space L0 is transformed into

L1 = {σ1(I + λ1M0)u, σ1((I + λ1ψ1)M0 + ψ1)u : u ∈ Π0} ⊂ Π1 × Π1.

Introduce the operator

Ai :Mi−1 −→Mi

defined by

Ai(M) = σiM(I + λiM)−1σ−1
i + ψ̃i.

Therefore we may write L1 = {(u,M1u) : u ∈ Π1} with M1 = A1(M0). By recurrence,
one defines

Lk = {(u,Mku) : u ∈ Πk}, Mk = Ak(Mk−1), k = 1, 2, . . . ,m.
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The maps Ak are contractions from Mk−1(ε) to Mk(ε), and hence

A = Am ◦ · · · ◦ A1

is also a contraction fromM0(ε) toM0(ε). We choose M0 ∈M0(ε) as a fixed point of
A and notice that ε > 0 can be chosen uniformly for all periodic rays. Thus we deduce

Pγ

(
u

M0u

)
=

(
Su

M0Su

)
with a map S : Π0 −→ Π0 having the form

S = σm(I + λmA′m−1(M0)) ◦ σm−1(I + λm−1A′m−2(M0)) ◦ · · · ◦ σ1(I + λ1M0),

where A′k = Ak ◦ Ak−1 ◦ · · · ◦ A1. Setting

d0 = min
i 6=j

dist (Di, Dj) > 0, d1 = max
i 6=j

dist (Di, Dj),

and β = log(1 + εd0), one obtains

‖Su‖ > (1 + d0ε)
m‖u‖ = eβm‖u‖.

Obviously, the eigenvalues of S are eigenvalues of Pγ and we conclude that Pγ has
(d− 1) eigenvalues ν1, . . . , νd−1 satisfying

|νj| > eβm, j = 1, . . . , d− 1.

For 0 < τ < λ1, consider a point ρ = φτ (z) ∈ B̊ ∩ γ, where z = (x, v) ∈ Din. The

map φτ : Din → B̊ is smooth near z and moreover dφτ (z) : Σz → Σφτ (z). We identify
Π0 × Π0 with Σz and Σφτ (z) with the image

dφτ (z)Σz =

(
I τI
0 I

)
(Π0 × Π0).

Next we define the unstable subspace of Σφτ (z) as

Eu(φτ (z)) = dφτ (z)(L0) =

(
I τI
0 I

)
(L0).

Let 0 < τ < λ1, 0 < σ < λp+1 with p > 1 and set t = −τ +
∑p

j=1 λj + σ. Then φt is
smooth near ρ and

dφt(ρ)|Σρ = dφσ(Bp(z)) ◦ dBp(z) ◦ dφ−τ (z) : Σρ → Σφt(ρ).

Thus we have the diagram

Eu(ρ)
dφt(ρ)−−−→ Eu(φt(ρ))ydφ−τ (ρ)

xdφσ(Bp(z))

Π0
χ0−−−→ L0

dBp(z)−−−−→ Lp
χp←−−− Πp,

where χ0 : Π0 3 u 7→ (u,M0u) ∈ L0 ⊂ Π0 × Π0 and χp : Πp 3 u 7→ (u,Mpu) ∈ Lp ⊂
Πp×Πp. It is easy to obtain an estimate of the action of dφt(ρ)|Eu(ρ) for ρ = φτ (z), v =
dφτ (z)(u,M0u) ∈ Eu(ρ). Clearly,

dφt(ρ) · v = (dφσ(Bp(z)) ◦ dBp(z))(u,M0u).
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By the above argument we deduce

dBp(z)(u,M0u) = (Spu,MpSpu) ∈ Lp
with

Sp = σp(I + λpA′p−1(M0)) ◦ σp−1(I + λp−1A′p−2(M0)) ◦ · · · ◦ σ1(I + λ1M0).

Setting β0 = β/d1 and w = (u,M0u) = dφ−τ (ρ) · v, we have

‖dBp(z) · w‖ = ‖(Spu,MpSpu)‖ > ‖Spu‖ > e
β
d1
pd1‖u‖ > eβ0(t+τ−σ)‖u‖,

hence we get

‖dBp(z) · w‖ 6 C0e−β0d1eβ0t‖w‖ = C0e−β0d1eβ0t‖dφ−τ (ρ)v‖. (A.2)

Here we used the estimate

‖w‖ =
(
‖u‖2 + ‖M0u‖2

)1/2

6 (1 +B2
0)1/2‖u‖

with ‖M0‖Π0→Π0 6 B0 and we set C0 = (1 + B2
0)−1/2. The constant B0 can be chosen

uniformly for all Mk and all periodic points since for every non-negative symmetric
map M one has

‖M(I + λkM)−1‖ 6 1

λk
6

1

d0

,

and the norms ‖ψ̃k‖ are uniformly bounded by a constant depending on the sectional
curvatures and κ > 0. Consequently,

‖Ak(M)‖ 6 B0, (A.3)

the same is true for the fixed point M0 = Am(Mm−1) and the estimate (A.3) is uniform

for all periodic points. Finally, estimating the norm of dφ−σ(Bp(z)) =

(
I −σI
0 I

)
, we

obtain ‖dφσ(Bp(z))ζ‖ > (1 + d1)−1‖ζ‖ and

‖dφt(ρ)v‖ > (1 + d1)−1C0e
−β0d1eβ0t‖dφ−τ (ρ)v‖

> (1 + d1)−2C0e
−β0d1eβ0t‖v‖.

It remains to treat the case ρ = φτ (z), z ∈ Din, 0 < t = τ + σ < λ1. Then

φt(ρ) = φτ+σ(z) ∈ B̊ ∩ γ and we obtain easily an estimate for ‖(dφτ+σ(z)) · v‖.

Our case is a partial one of a more general setting (see [LW94]) concerning Lagrangian
spaces {(u,Mu)} with positive definite linear maps M . Such spaces are called pos-
itive Lagrangian. A linear symplectic map L is called monotone if it maps positive
Lagrangian onto positive Lagrangian. In [LW94] it is proved that any monotone sym-
plectic map is a contraction on the manifold of positive Lagrangian spaces. After a
suitable conjugation the map L has the representation (see Proposition 3 in [LW94])

L =

(
A−1 0

0 A∗

)(
I R
P I + PR

)
with positive definite matrices P, R. In our situation we have A = I, R = λiI, P = ψi.
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To determine the stable space Es(z) at z, we will study the flow φt for t < 0 and
repeat the above argument leading to a fixed point. The linear map P−1

γ for a periodic
ray γ with m reflexions has the representation

P−1
γ = (dΨ1)−1 ◦ · · · ◦ (dΨm)−1 : Π0 × Π0 −→ Π0 × Π0,

where

(dΨk)
−1 =

(
σ−1
k 0
0 σ−1

k

)(
I + λkψk −λkI
−ψk I

)
.

Recall that Π0 = Πm. Consider a Lagrangian Q0 = Qm = {(u,−Nmu) : u ∈ Π0} with
a symmetric non-negative definite map Nm ∈M0. Then

(dΨm)−1Qm =
{(
σ−1
m (I + λm(ψm +Nm))u,−σ−1

m (ψm +Nm)u
)

: u ∈ Π0

}
= {(u,−Nm−1u) : u ∈ Πm−1},

where

Nm−1 = σ−1
m (ψm +Nm)

(
I + λm(ψm +Nm)

)−1

σm : Πm−1 −→ Πm−1.

By recurrence, introduce the Lagrangian spaces

Qk = {(u,−Nku) : u ∈ Πk}, Nk = Bk(Nk+1), k = 0, . . . ,m− 1,

where

Bk(M) = σ−1
k+1(ψk+1 +M)

(
I + λk+1(ψk+1 +M)

)−1

σk+1 : Πk −→ Πk.

It is easy to see that Bk are contractions from Mk+1(ε) to Mk(ε) since

σk+1

(
Bk(M1)− Bk(M2)

)
σ−1
k+1

= (I + λk+1(ψk+1 +M1))−1(M1 −M2)(I + λk+1(ψk+1 +M2))−1.

Therefore, B = B0 ◦ · · · ◦ Bm−1 will be contraction from M0(ε) to M0(ε) and there
exists a fixed point Nm ∈M0(ε) of B. Moreover,

P−1
γ

(
u

−Nmu

)
=

(
S̃u

−NmS̃u

)
, u ∈ Π0,

where

S̃ =σ−1
1 (I + λ1(ψ1 + B′1(Nm))) ◦ σ−1

2 (I + λ2(ψ2 + B′2(Nm)))

◦ · · · ◦ σ−1
m (I + λm(ψm +Nm))

and B′k = Bk ◦ · · · ◦ Bm−1, k = 1, . . . ,m− 1. Clearly,

‖S̃u‖ > (1 + d0ε)
m‖u‖, u ∈ Π0,

where ε > 0 depends of the sectional curvatures of D. Thus the stable manifold at
φσ(z),−λm−1 < σ < 0 can be defined as Es(φσ(z)) = dφσ(z)(Qm) and we may repeat
the above argument for the estimate of dφt(φσ(z)) acting on Es(φσ(z)) for t < 0.

The intersection of the unstable and stable manifolds at y = φt(z), 0 < t < λp is
(0, 0). Indeed, we have

Eu(y) = dφt(z)(Lp−1), Es(y) = dφt−λp(φλp(z))(Qp),
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where Lp−1 = {(u,Mp−1u) : u ∈ Πp−1×Πp−1} and Qp = {(−u,−Npu) : u ∈ Πp×Πp}.
Assume thatEu(y)∩Es(y) 6= (0, 0). Then there exists 0 6= v ∈ Lp−1∩dφ−λp(φλp(z))(Qp).
By the above argument dφ−λp(φλp(z))(Qp) = {(u,−Np−1u) : u ∈ Πp−1 × Πp−1}. This
implies the existence of u 6= 0 for which (Mp−1 +Np−1)u = 0 which is impossible since
Mp−1 +Np−1 is a definite positive map. Consequently, Eu(y) and Es(y) are transversal
subspaces of dimension d− 1 of Σy and we have a direct sum Σy = Eu(y)⊕ Es(y).

Now we pass to the estimates of dφt(z)|Eu(z), where z ∈ B̊ ∩ Ke is not a periodic
point. Since z ∈ Ke, the trajectory γ = {φt(z) : t ∈ R} has infinite number successive
reflection points qk ∈ ∂Dik , k ∈ Z, with an infinite sequence

J0 = (ij)j∈Z, ij 6= ij+1.

For every p > p0 � 1 define the configuration

αp =

{
(i−p, . . . , i0, . . . , ip) if ip 6= i−p,
(i−p, . . . , i0, . . . , ip+1) if ip = i−p.

Repeating αp infinite times, one obtains an infinite configuration and following the
arguments of the proof of Proposition 10.3.2 in [PS17], there exists a periodic ray γp
following this configuration. Thus we obtain a sequence of periodic rays (γp0+k)k>0.
Let {qp,k ∈ ∂Dik} be the reflexion points of γp. For the periodic ray γp passing through
qp,0 ∈ ∂Di0 consider the linear space

Lp,0 = {(u,Mp,0u) : u ∈ Πp,0} ⊂ Πp,0 × Πp,0.

Our purpose is to show that the symmetric linear maps Mp,0 ∈ Mp,0(ε) composed by

some unitary maps converge as p→∞ to a symmetric linear map M̃0 ∈M0(ε) on Π0.
This composition is necessary since the maps Mp,0, p > p0, are defined on different
spaces. To do this, we will use Lemmas 10.2.1, 10.4.1 and 10.4.2 in [PS17]. Consider
the rays γp0+q, q > 1, and γ. These rays have reflection points passing successively
through the obstacles

L′ = Di−p0−1 , Di−p0
, . . . , Di0 , . . . , Dip0

, Dip0+1 = L′′.

According to Lemma 10.2.1 in [PS17], there exist uniform constants C > 0 and δ ∈
(0, 1) such that for any |k| 6 p0 and j = 1, . . . , q, one has

‖qp0+1,k − qp0+j,k‖ 6 C(δp0+k + δp0−k), ‖qp0+j,k − qk‖ 6 C(δp0+k + δp0−k).

We need to introduce some notations from [PS17, Section 10.4]. Let x ∈ ∂Di and
y ∈ ∂Dj with i 6= j, and assume that the segment [x, y] is transversal to both ∂Di and
∂Dj. Let Π be the plane orthogonal to [x, y], passing through x. Let e = (x−y)/‖x−y‖,
and introduce the projection π : Π −→ Tx(∂D) along the vector e. As above, we define

the symmetric linear map ψ̃ : Π→ Π by

〈ψ̃(u), u〉 = 2〈e, n(x)〉〈Gx(π(u)), π(u)〉, u ∈ Π,

and notice that
spec ψ̃ ⊂ [µ1, µ2], 0 < µ1 < µ2.

Setting D0 = 2C, we have the estimates

‖qp0+j,k − qk‖ 6 D0δ
p0+k, k = −p0 + 1, . . . , 0, j = 1, . . . , q.
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Fix 1 6 j 6 q and introduce the vectors

ek =
qk+1 − qk
‖qk+1 − qk‖

, e′k =
qp0+j,k+1 − qp0+j,k

‖qp0+j,k+1 − qp0+j,k‖
.

Consider the maps ψ̃k : Πk −→ Πk and ψ̃′k : Π′k −→ Π′k related to the segments
[qk−1, qk] and [qp0+j,k−1, qp0+j,k], respectively. Let M−p0+1 : Π−p0+1 −→ Π−p0+1 and
M ′
−p0+j : Π′−p0+j −→ Π′−p0+j be symmetric non-negative definite linear operators. By

induction, define

Mk = σkMk−1(I + λkMk−1)−1σk + ψ̃k, k = −p0 + 2, . . . , 0,

where λk = ‖qk−1 − qk‖ and σk is the symmetry with respect to Tqk∂D. Similarly, we

define M ′
k, k = −p0 + 2, . . . , 0, replacing ψ̃k, λk and σk by ψ̃′k, λp0+j,k = ‖qp0+j,k−1 −

qp0+j,k‖ and σ′k, respectively. Next, introduce the constants

b = (1 + 2µ1κd0)−1 < 1, a1 = max{δ, b} < 1,

where d0 > 0 and κ > 0 were defined above. We choose M−p0+1 so that ‖M−p0+1‖ 6 B0

and by induction one deduces ‖Mk‖ 6 B0. Here B0 > 0 is the constant in (A.3). We
have uniform estimates

‖Mk‖ 6 B0, ‖M ′
k‖ 6 B0, k = −p0 + 1, . . . , 0. (A.4)

Applying in [PS17, Lemma 10.4.1], there exists a linear isometry Ak : Rd → Rd such
that Ak(Π

′
k) = Πk, and Ak satisfies the estimates

‖Ak − I‖ 6 C1D0(1 + δ)δk, ‖ψ̃k − Akψ̃′kA−1
k ‖ 6 C2D0(1 + δ)δk, (A.5)

for any k = −p0 + 1, . . . , 0. Now we are in position to apply in [PS17, Lemma 10.4.2]
saying that with some constant E > 0, depending only on D, κ, δ and b, for k =
−p0 + 1, . . . , 0 we have

‖Mk − AkM ′
kA
−1
k ‖ 6 D0Ea

p0+k
1 + b2(k+p0−1)‖M−p0+1 − A−p0+1M

′
−p0+1A

−1
−p0+1‖. (A.6)

The norm of the second term on the right hand side is bounded by 2B0b
2(k+p0−1) and

for k = 0 one gets

‖M0 − A0M
′
0A
−1
0 ‖ 6 D0Ea

p0
1 + 2B0b

2(p0−1).

Applying the above estimate for the rays γp0+q, the maps M ′
0, A0 will depend on the ray

γp0+q and for this reason we denote them by M ′
q,0, Aq,0. Now we use these estimates for

the maps M ′
q,0, Mq′,0 related to the rays γp0+q and γp0+q′ and by the triangle inequality

one deduces ∥∥Aq,0M ′
q,0A

−1
q,0 − Aq′,0M ′

q′,0A
−1
q′,0

∥∥ 6 2D0Ea
p0
1 + 4B0b

2(p0−1). (A.7)

Here Aq,0(Π′q,0) = Π0 and Aq′,0(Π′q′,0) = Π0 are some isometries satisfying the esti-

mates (A.5). Clearly, one obtain a Cauchy sequence (Aq,0M
′
q,0A

−1
q,0)q>1 which converges

to a symmetric non-negative linear map M̃0 in Π0. Moreover, if for every q we have

M ′
q,0 > εI, then M̃0 > εI.
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After this preparation we define the unstable manifold at φt(z0) for some 0 < τ <
‖q1 − q0‖ as the subspace

Eu(φτ (z)) = dφτ (z){(u, M̃0u) ∈ Π0 × Π0 : u ∈ Π0} ⊂ Σφτ (z).

It is important to note that the procedure leading to the estimate (A.6) can be repeated

starting with M̃0 instead of M−p0+1. Then if M̃k are the maps obtained from M̃0 after
successive reflexions, we obtain an estimate

‖M̃k − AkM ′
kA
−1
k ‖ 6 D0Ea

p0+k
1 + b2(k+p0−1)‖M̃0 − A0M̃

′
0A
−1
0 ‖

for k = 1, . . . , p0/2.

We can repeat the above argument for ρ = φτ (z), v ∈ Eu(ρ), and t = −τ+
∑p

j=1 λj+

σ, where 0 < τ < λ1 and 0 < σ < λp+1, to estimate ‖dφt(ρ) ·v‖. We apply (A) with the

expansion map S̃p defined as the composition of the maps (I + λkA′k−1(M̃0)) and we
get (A.4). Finally, the construction of the stable space Es(φσ(z)), −‖q−1−q0‖ < σ < 0
can be obtained by a similar argument and we omit the details.

Appendix B. Ikawa’s criterion for even dimensions

In this appendix we prove the result of Ikawa [Ika90a, Theorem 2.1] for all dimensions
d > 2. This results is based on Lemma 2.2, Proposition 2.3 and Theorem 2.4 in [Ika90a].
For the modification covering all dimensions d > 2, it is necessary only to modify
Lemma 2.2 since the other results are independent of the dimension d. Below we
consider only the resonances µj for which 0 < arg µj < π and we omit this in the
notation. In what follows set

Λρ = {µj : 0 < Imµj 6 ρ|Reµj|, 0 6 arg µj 6 π}.
Let ρ ∈ C∞c (R, [0, 1]) be an even function with supp ρ ⊂ ]−1, 1[ such that

ρ(t) = 1 if |t| 6 1/2,

and with the property that its Fourier transform is nonnegative,

ρ̂(k) =

∫
eitkρ(t)dt > 0, k ∈ R.

Let (`q)q∈N and (mq)q∈N be sequences of positive numbers such that `q > d0 > 0 and
`q,mq →∞ as q →∞. Finally, set

ρq(t) = ρ(mq(t− `q)), t ∈ R,
and c0 =

∫
ρ(t)dt. The result [Ika90a, Lemma 2.2] must be modified as follows.

Lemma B.1. Let α > 1 and assume that

#{j : µj ∈ Λ+
ρ : 0 < Imµj 6 α} = P (α) <∞.

Then ∑
µj∈Λρ

|ρ̂q(µj)| 6 C0e
αmd+1

q e−αlq + c0P (α)m−1
q (B.1)

for some constant C0 > 0 independent of α and q.
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Proof. We write ∑
zj∈Λρ

=
∑
zj∈Λρ

Im zj>α

+
∑
zj∈Λρ

Im zj6α

= (I) + (II).

In the sum (II) there is only a finite number of terms and∣∣∣∣∫ ρ(mq(t− `q))eitµjdt
∣∣∣∣ 6 ∫ ρ(mq(t− `q))dt 6 c0m

−1
q .

For (I) one integrates by parts,∫
ρ(mq(t− `q))eitµjdt =

(−1)d+2md+2
q

(iµj)d+2

∫
ρ(d+2)(mq(t− `q))eitµjdt. (B.2)

Since supp ρq ⊂ [`q −m−1
q , `q +m−1

q ] and Imµj > α, we have

|eitµj | 6 e−t Imµj 6 e−α(`q−m−1
q ) 6 eαe−α`q .

In particular the right hand side of (B.2) is estimated by Ceα
e−α`qmd+1

q

|µj |d+2 ‖ρ‖Cd+2(R) with

a constant C > 0 independent of j and q. On the other hand, by the results of Vodev
[Vod94b], [Vod94a] we have the estimate

#{µj : |µj| 6 k} 6 C1k
d,

and the series∑
|µj |>1

1

|µj|d+2
=
∞∑
k=1

∑
k6|µj |<k+1

1

|µj|d+2
6 C1

∞∑
k=1

(k + 1)d

kd+2
6 C2

is convergent. This completes the proof. �

Notice that the other terms in the trace formula of Zworski (1.2) are easily estimated.
In fact, since λ 7→ ψ(λ) has compact support, one gets∣∣∣∣∫ (∫ ψ(λ)

dσ

dλ
cos(λt)dλ

)
ρ(mq(t− `q))dt

∣∣∣∣ 6 Cψ

∫
ρ(mq(t− `q))dt

6 Cψc0m
−1
q .

Similarly, ∣∣∣∣∫ vρ,ψ(t)ρ(mq(t− `q))dt
∣∣∣∣ 6 Cρ,ψ

∫
ρ(mq(t− `q))dt 6 c0Cρ,ψm

−1
q .

We can put the estimates of these terms in (c0P (α) + C3)m−1
q . Finally, under the

assumption of [Ika90a, Lemma 2.2], we have, for all q ∈ N,

|〈u, ρq〉| 6 C0eαmd+2
q e−αlq + (c0P (α) + C3)m−1

q , (B.3)

with constants C0, P (α), C3 independent of the sequences (`q) and (mq).
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Define the distribution F̂D ∈ D′(R+) by

F̂D(t) =
∑
γ∈P

(−1)m(γ)τ ](γ)δ(t− τ(γ))

| det(I − Pγ)|1/2
.

Then for Re s� 1 we have ηD(s) = 〈F̂D(t), e−st〉. As we mentioned above, the following
results are proved in [Ika90a] and their proofs are independent of the dimension d. For
convenience of the reader we present the statements.

Proposition B.2 (Prop. 2.3, [Ika90a]). Suppose that the function s 7→ ηD(s) cannot
be prolonged as an entire function of s. Then there exists α0 > 0 such that for any
β > α0 we can find sequences (`q), (mq) with `q → ∞ as q → ∞ and such that for all
q > 0 one has

eβ`q 6 mq 6 e2β`q and |〈F̂D, ρq〉| > e−α0`q .

Theorem 5 (Theorem 2.4, [Ika90a]). There are C, α1 > 0 such that for any sequences
(`q) and (mq), it holds

|〈u, ρq〉| > |〈F̂D, ρq〉| − Ceα1`qm−1
q . (B.4)

Remark B.3. In [Ika90a, Theorem 2.4], on the right hand side of (B.4), one has the
term m−εq for some ε > 0 instead of m−1

q . In particular the above estimate holds,
increasing β > α0.

The above theorem is given in [Ika90a] without proof. However its proof repeats
that of Proposition 2.2 in [Ika88c] following the procedure described in [Ika85, §3] and
exploiting the construction of asymptotic solutions in [Ika88a]. The first term on the
right hand side of (B.4) is obtained by the leading term in (1.3) applying the stationary
phase argument to a trace of a global parametrix (see Chapter 4 in [PS17]) or to the
trace of the asymptotic solutions given below. For the second one we must estimate a
sum ∑

γ∈P
τ(γ)6`q+m

−1
q

∫ `q+m
−1
q

`q−m−1
q

ρq(t)rγ(t)dt,

where rγ is a function in L1
loc(R), which is obtained from the lower order terms in the

application of the stationary phase argument. Since rγ(t) could increase as t→∞, we
need a precise analysis of the behavior of rγ(t).

We discuss briefly the approach of Ikawa and refer to [Ika85], [Ika88a] for more
details. First one expresses the distribution u(t) defined in Introduction by the kernels
E(t, x, y), E0(t, x, y) of the operators cos(t

√
−∆) ⊕ 0 and cos(t

√
−∆0), respectively

(recall that −∆ is the Laplacian in Q = Rd \D with Dirichlet boundary conditions on
∂D). Consider

Ê(t, x, y) =

{
E(t, x, y) if (x, y) ∈ Q×Q,

0 if (x, y) /∈ Q×Q.
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If D ⊂ {x : |x| 6 a0}, then

suppx,y

(
Ê(t, x, y)− E0(t, x, y)

)
⊂
{

(x, y) ∈ Rd × Rd : |x| 6 a0 + t, |y| 6 a0 + t
}
.

For t ∈ supp ρq we must study the trace∫
Ωq

〈Ê(t, x, x)− E0(t, x, x), ρq〉dx

with Qq = {x ∈ Q : |x| 6 a0 + `q + 1}. For odd dimensions the kernel E0(t, x, x)
vanishes for t > 0. For even dimensions, x 7→ E0(t, x, x) is smooth for any t > 0 and
we can easily estimate ∣∣∣∣∣

∫
Ωq

〈E0(t, x, x), ρq〉dx

∣∣∣∣∣ 6 A0m
−1
q

with A0 > 0 independent of q by using the representation of the kernel E0(t, x, y) by
oscillatory integrals with phases eik(〈x−y,ω〉±t) (see for example, [PS17, §3.1]).

Now, choose g ∈ C∞c (Qq) and write the kernel E(t, x, y)g(y) of cos(t
√
−∆)g(y) as

E(t, x, y)g(y) = (2π)−d
∫
Sd−1

dω

∫ ∞
0

kd−1u(t, x; k, ω)e−ik〈y,ω〉g(y)dk,

where u(t, x; k, ω) is the solution of the problem
(∂2
t −∆x)u = 0 in R×Q,

u = 0 on R× ∂Q,
u(0, x) = g̃(x)eik〈x,ω〉, ∂tu(0, x) = 0,

with a function g̃ ∈ C∞c (Q) equal to 1 on supp g. In the works [Ika85, Ika88a, Ika88c,

Bur93]) of Ikawa and Burq, asymptotic solution w(N) = w
(N)
q,+ + w

(N)
q,− of the above

problem have been constructed. They have the form

w
(N)
q,± (t, x; k, ω) =

∑
|j|d06a0+`q+1

eik(ϕ±j (x,ω)∓t)
N∑
h=0

v±j,h(t, x, ω)(ik)−h.

Here j = {j1, j2, . . . , jn}, jk ∈ (1, . . . , r), jk 6= jk+1, k = 1, 2, . . . , n− 1, |j| = n is a con-
figuration related to the rays reflecting successively on ∂Dj1 , ∂Dj2 , ..., ∂Djn (see §2.3).
The phases ϕj are constructed successively starting from 〈x, ω〉 and following the reflec-
tions on obstacles determined by the configuration j. The amplitudes are determined
by transport equations. The reader may consult [Ika85, §3], [Ika88c, Equations (3.2)
and (3.3)], [Ika88a, §4] and [Bur93] for the construction of v±j . The function u− w(N)

is solution of the problem
(∂2
t −∆x)(u− w(N)) = k−NFN(t, x; k, ω) in R×Q,

u− w(N) = k−NbN(t, x; k, ω) on R× ∂Q,
(u− w(N))(0, x; k, ω) = ∂t(u− w(N))(0, x; k, ω) = 0.
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Here FN is obtained as the action of (∂2
t − ∆x) to the amplitudes v±j,N , while bN is

obtained by the traces on ∂Q of the amplitudes vj,N . It is important to note that the
asymptotic solutions w(N) are independent of the sequence (mq). The integral involving
u − w(N) is easily estimated and it yields term O(m−1

q ) (see [Ika85]). For the integral

with w
(N)
q,± involving w

(N)
q,± one applies the stationary phase argument as k →∞ for the

integration with respect to x ∈ Qq, ω ∈ Sd−1, considering t as a parameter. Next, in
[Ika88a], estimates of the p derivatives of v±j,h(x, t, ω) with respect to x ∈ Qq, ω ∈ Sd−1

with bound Cpe
−α2`q(t + 1)h have been established. Here Cp > 0 and α2 > 0 are

independent of `q. This implies the estimate∣∣〈u− F̂D, ρq〉
∣∣ 6 Ae−α2`q#

{
j : |j| 6 2`q

d0

}
`2N+2
q m−1

q

with constant A > 0 independent of q. Since

#
{
j : |j| 6 2`q

d0

}
6 eα3`q , ∀q,

we obtain (B.4), by using a partition on unity
∑

j ψj(x) = 1 on Qq.

Combining Proposition B.2 and the estimates (B.3) and (B.4), it is easy to find
α > 0 so that the strip {z : 0 6 Im z 6 α} contains an infinite number of resonances.
Indeed, let

α = (d+ 2)(α0 + α1 + 1), β =
α

d+ 2
,

and suppose P (α) <∞. Then

md+1
q e−α`q > e(d+1)β`qe−α`q = e−β`q

and from (B.3), (B.4) one deduces

(C0eα + c0P (α))e−β`q > e−α0`q − Ceα1`qe−β`q = e−α0`q(1− Ce−`q).

Since β > α0, letting q →∞ yields a contradiction.
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Dérivées Partielles, 1996–1997, pages Exp. No. XIII, 14. École Polytech., Palaiseau, 1997.
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