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INTRODUCTION

The great does not happen through

impulse alone, and is a succession of little

things that are brought together

Vincent van Gogh

Which integers x,y ∈ Z satisfy the equation x2 − 3y2 = 1 or the equation x2 + 19 = y3?

How many integers satisfy the equation x4 + y4 = z4? Questions of this kind, which

look very simple and naive at a first glance, have been the leading motivation for the

development of algebraic number theory. For instance equations of the form x2 − dy2 = 1

go under the name of Pell’s equation. The formula x2 − dy2 = (x +
√
dy)(x −

√
dy) shows

that finding all the solutions to Pell’s equations involves studying the units of the rings

Z[
√
d] = {a + b

√
d | a,b ∈ Z}. It turns out that all the solutions to the Pell equation are

generated by a fundamental solution because the units of Z[
√
d] can be expressed (up to

sign) as powers of a fundamental unit thanks to Dirichlet’s unit theorem, one of the main

results in classical algebraic number theory. Studying equations of the type x2 − d =

y3 leads to the problem of understanding not only the unit group Z[
√
d]× but also the

class group Cl(Q(
√
d)) which is a finite group that measures to what extent Z[

√
d] is a

principal ideal domain. Finally we can prove that x4 + y4 = z4 has no integral solutions

such that xyz ̸= 0 by studying the unit group Z[i]× and the class group Cl(Q(i)) but

proving that the general Fermat equation xn + yn = zn has no integral solutions when
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n ≥ 3 and xyz ̸= 0 is one of the most difficult and notable theorems of the history of

mathematics, proved by Andrew Wiles in 1995 after 358 years of joint efforts by the

most famous mathematicians.

The complicated proof of Fermat’s last theorem takes place in the wide area of arith-

metic geometry which studies the deep links between geometry and number theory that

have been discovered in the twentieth century. The protagonists of the proof are ellip-

tic curves which are curves defined over the rational numbers as the sets of solutions of

equations of the form y3 = x2 + ax + b. The key ingredient of Wiles’ work is the proof of

the modularity theorem which states that for every elliptic curve E over Q there exists a

finite and surjective rational map X0(n) ↠ E, where X0(n) is the classical modular curve

of level n ∈ N. The first chapter of this work reviews the classical, analytic definition of

modular curves, which play a fundamental role in number theory.

As we have seen, to study equations over the integers it is usually necessary to study

finite extensions Q ⊆ Q(α), which are called number fields. Here α ∈ C is any algebraic

complex number, which is equivalent to say that there exists an irreducible polynomial

f (x) ∈ Q[x] with such that f (α) = 0. To study these extensions it is often crucial to

understand the group AutQ(Q(α)) of automorphisms of fields Q(α) ∼−→Q(α) which fix Q,

and this group plays a crucial role when Q ⊆Q(α) is a Galois extension, which means that

there exists an irreducible polynomial f (x) ∈Q[x] such that f (α) = 0 and if β ∈ C is such

that f (β) = 0 then β ∈Q(α). In particular if we denote by Q the union inside C of all the

number fields Q(α) then Galois theory tells us that if Q ⊆Q(α) is a Galois extension then

the group Gal
(
Q(α)/Q

)
def= AutQ(Q(α)) is a quotient of the group GQ

def= AutQ(Q) which is

called the absolute Galois group of the rational numbers.

Understanding the topological group GQ is one of the biggest problems of number

theory. A better understanding of GQ can be achieved for instance by looking at its

continuous representations over the complex numbers, which are continuous homomor-

phisms of groups GQ→GLn(C). Relating these representations to the analytic theory of

automorphic forms is the subject of the Langlands program, a very wide set of conjectures

which leads much of the research in number theory today. If n = 1 studying characters

GQ→ GL1(C) = C× is equivalent to study the abelianization Gab
Q of GQ and is what goes
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under the name of class field theory. The main results of this area can be stated as

Gab
K
∼= ĈK with CK =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K×, if K is local

A×K /K
×, if K is global

(1)

where AK is the adèle ring associated to a global field K . The beginning of the second

chapter of this report contains the definition and the basic properties of the ring AK ,

which was defined to state the main results of class field theory in the very short way

outlined in (1).

This thesis deals with the connections between modular curves and adèle rings. First

of all we prove in section 2.3 that disjoint unions of some copies of the affine modular

curves Γ\h defined in section 1.1 are homeomorphic to double quotients of the group

GL2(AQ) by the left action of GL2(Q) and the right action of the product of a compact

and open subgroup K∞ ≤ GL2(A∞Q ) and the group K∞
def= R>0 × SO2(R). The original aim

of this thesis was to find a topological space Z(AQ), or maybe a scheme of finite type Z re-

lated to the adèle ring AQ such that disjoint unions of some Baily-Borel compactifications

of modular curves were homeomorphic to the double quotient GL2(Q)\Z(AQ)/K∞ ×K∞.

Trying to pursue this objective we encountered some difficulties in adding the archime-

dean place to A∞Q , as we explain in section 3.2. We turned then our attention to the

Borel-Serre compactification of modular curves, which is another way of compactifying

modular curves that is described in section 1.3. Using this compactification we were

able to find a topological space Z(AQ) such that disjoint unions of compactified modular

curves are homeomorphic to double quotients of the form GL2(Q)\Z(AQ)/K∞ ×K∞. As

we say in the conclusions, the space Z(AQ) is not a scheme of finite type over Z or over

AQ and its definition is not “homogeneous” in the finite and infinite part of AQ, which

leads to interesting questions concerning its definition.

To sum up, the main objective of this thesis was to give a description of the projective

limit lim←−−nX(n) of compactified modular curves as a Shimura variety, i.e. as the projec-

tive limit of quotients G(Q)\
(
X ×G(A∞Q )/K∞

)
where X is a suitable Hermitian symmetric

space, G = GL2 or any other reductive algebraic group and K∞ ≤ G(A∞Q ) runs over all

the sufficiently small compact and open subgroups. The most attractive aspect of such

a description would be the possibility of defining a suitable theory of automorphic rep-
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resentations on the compactified modular curves in the spirit of the Langlands program.

All starting from three simple, integral equations!
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CHAPTER1

MODULAR CURVES AND THEIR COMPACTIFICATIONS

I think I will stop here.

Andrew Wiles, after finishing writing

the proof of Fermat’s last theorem

Chapter Abstract

We recall in this chapter the definition of affine modular curves as quotients of the com-

plex upper-half plane. We also introduce two ways of compactifying them which were

introduced by Baily and Borel in [1] and [2] and by Borel and Serre in [3]

1.1 The analytic definition of modular curves

In this section we define the modular curves as quotients of the upper half plane by the

action of suitable subgroups Γ ≤ SL2(R). To do so recall first of all that the group

GL+
2 (R) =

{(
a b
c d

)
∈M2,2(R) | ad − bc > 0

}
of invertible 2× 2 matrices with real entries and positive determinant acts on the upper

half plane

h = {z ∈ C | ℑ(z) > 0} by setting
(
a b
c d

)
∗ z =

az+ b
cz+ d
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which is a well defined action. Indeed for every
(
a b
c d

)
∈ M2,2(R) and z ∈ h we have

cz+ d ̸= 0 and

ℑ
(
az+ b
cz+ d

)
=
ad − bc
|cz+ d|2

·ℑ(z)

which implies that
(
a b
c d

)
∗z ∈ h if z ∈ h and

(
a b
c d

)
∈GL+

2 (R). Moreover it is straightforward

to prove that
(

1 0
0 1

)
∗ z = z and A ∗ (B ∗ z) = (A · B) ∗ z for every A,B ∈ GL+

2 (R) and z ∈ R,

which implies that GL+
2 (R) ⟳ h is a well defined group action. It is important to note

that using this action we can describe the full group of bi-holomorphic transformations

of h, as shown in Theorem 1.1.

Theorem 1.1. Let Aut(h) be the group of all bi-holomorphic functions h→ h and let

ρ:GL+
2 (R)→ Aut(h) such that ρ

((
a b
c d

))
(z) =

az+ b
cz+ d

be the group homomorphism induced by the action GL+
2 (R) ⟳ h. Then ρ is surjective and

ker(ρ) = {
(
a 0
0 a

)
| a ∈ R×}

which implies that

Aut(h) ∼= PSL2(R) def= SL2(R)/
{
±
(

1 0
0 1

)}
where SL2(R) def=

{(
a b
c d

)
∈M2,2(R) | ad − bc = 1

}
.

Proof. See Theorem 2.4 in Chapter 8 of [16].

The previous theorem suggests to consider the action SL2(R) ⟳ h instead of the ac-

tion of GL2(R). Thus for every subgroup Γ ≤ SL2(R) we will consider the topological

space Γ\h whose elements are the orbits of the action Γ ⟳ h and whose topology is the

finest topology such that the quotient map h ↠ Γ\h is continuous. In order to study

the topological properties of this quotient we shall review the topological properties of

SL2(R).

We can define a topology on the space of 2 × 2 matricesM2,2(R) using the bijection

M2,2(R)↔ R4. With this topology we have that SL2(R) ⊆M2,2(R) is a closed subset since

SL2(R) = det−1(1) and the map det:M2,2(R)→ R is continuous. Observe moreover that

SL2(R) endowed with the subspace topology is itself a topological group, which is true

over the real numbers but not for every topological ring R.
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Recall now that the action G ⟳ X of a group G on a topological space X is said to be

properly discontinuous if for every two compact subsets K1,K2 ⊆ X the set

{g ∈ G : g ∗K1 ∩K2 ̸= ∅}

is finite. We can characterize the subgroups Γ ⊆ SL2(R) such that the action Γ ⟳ h is

properly discontinuous in the following topological way.

Theorem 1.2. Let Γ ≤ SL2(R) be a subgroup. Then Γ ⟳ h is properly discontinuous if and

only if Γ is a discrete subspace of SL2(R).

Proof. See Proposition 1.6 of [15].

We have seen in the previous theorem that discrete subgroups of SL2(R) play an

important role when looking at the action SL2(R) ⟳ h, and thus they have the special

name of Fuchsian groups. Some important examples of Fuchsian groups are given by

subgroups of the full modular group

SL2(Z) =
{(
a b
c d

)
∈M2,2(Z) | ad − bc = 1

}
which is clearly a discrete subgroup of SL2(R).

Definition 1.3. For every N ∈ N we define

Γ0(N ) def=
{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 mod N

}
Γ1(N ) def=

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 and a ≡ d ≡ 1 mod N

}
Γ(N ) def=

{(
a b
c d

)
∈ SL2(Z) | b ≡ c ≡ 0 and a ≡ d ≡ 1 mod N

}
.

The group Γ(N ) is called the principal congruence subgroup of level N and the groups

Γ0(N ) and Γ1(N ) are called modular groups of Hecke type of level N .

Let us return for now to the general setting in which Γ ≤ SL2(R) is a Fuchsian group.

As we said, the fact that the action Γ⟳ h is properly discontinuous is important to prove

that the quotient topological space Γ\h maintains some of the topological properties of

h, as shown in the following theorem.
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Theorem 1.4. Let Γ ⊆ SL2(R) be a Fuchsian group. Then the quotient Γ\h is a locally compact,

connected and Hausdorff topological space. Moreover, it admits a unique Riemann surface

structure such that the quotient map h↠ Γ\h is holomorphic.

Proof. See Section 1.5 of [15].

Using Theorem 1.4 we define YΓ
def= Γ\h to be the affine modular curve associated to the

Fuchsian group Γ ≤ SL2(R). In particular we define

Y (N ) def= YΓ(N ) and Y0(N ) def= YΓ0(N ) and Y1(N ) def= YΓ1(N )

for every N ∈ N. We recall now that many important results from the theory of Riemann

surfaces hold only if a Riemann surface is compact. The most important of these results

is Riemann’s existence theorem which implies that every compact Riemann surface S ad-

mits an embedding S ↪→ P3(C) whose image is an algebraic curve, which allows us to use

the tools of algebraic geometry to study compact Riemann surfaces. For a proof of this

theorem we refer to §10 of [13].

Nevertheless not many of the surfaces YΓ are compact, as it is shown in the following

proposition.

Proposition 1.5. Let Γ ≤ SL2(R) be a Fuchsian group such that the Riemann surface YΓ is

compact. Then for every A =
(
a b
c d

)
∈ Γ \ {±I2} we have (a+ d)2 ̸= 4.

Proof. See Proposition 1.33 of [15].

Corollary 1.6. For every N ∈ N≥1 the Riemann surfaces Y (N ), Y0(N ) and Y1(N ) are not

compact.

Proof. We have AN =
(

1 N
0 1

)
∈ Γ(N ) and Γ(N ) ≤ Γ1(N ) ≤ Γ0(N ) for every N ∈ N which

implies that Γ(N ), Γ1(N ) and Γ0(N ) contain a matrix AN such that tr(AN )2 = 4.

Aside: Moduli problems and the algebraic definition of modular curves

We want to add here a small aside about another possible definition of modular curves

as moduli spaces for elliptic curves over Q. This is useful to understand why modular
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curves arise as a natural object to consider in arithmetic geometry, and how the three

classical families of congruence subgroups Γ(n), Γ0(n) and Γ1(n) have been defined.

As we already said in the introduction an elliptic curve over any field K of charac-

teristic different from 2 and 3 is simply the algebraic curve defined by an equation of

the form y2 = x3 + ax + b where a,b ∈ K and 4a3 + 27b2 ̸= 0. It can be proved that an

elliptic curve over the complex numbers is always isomorphic (as a Riemann surface) to

C/Z⊕Zτ where τ ∈ h is unique up to the action of SL2(Z). This shows that the quotient

Γ(1)\h = SL2(Z)\h parametrizes the set of isomorphism classes of elliptic curves over the

complex numbers and gives us a first insight into the interpretation of modular curves

as moduli spaces of elliptic curves.

Definition 1.7. A moduli space is a geometric object (for example a topological space,

a scheme or something more general) whose points parametrize a family of geometric

objects (for example, elliptic curves) or the solutions to a geometric problem.

Definition 1.7 is very vague but it can be made precise by looking at the theory of

moduli spaces as representatives of contravariant functors from a category of “geomet-

ric objects” (for instance schemes) to the category of sets. For the precise definition of

moduli problems in this general context and their properties we refer to Chapter 4 of

[11]. We can nevertheless see how the modular curves Γ(n)\h, Γ0(n)\h and Γ1(n)\h can

be interpreted as spaces classifying suitable isomorphism classes of elliptic curves, as it

is stated in Theorem 1.10.

Proposition 1.8. Let Q ⊆ L be an extension of fields, and let E be an elliptic curve defined

over L. Then for every extension L ⊆ K the set E(K) of K-rational points of E has a natural

structure of abelian group. We denote by E[n](K) the set of all points P ∈ E(K) such that

nP = 0.

Definition 1.9. Let Q ⊆ L be an extension of fields, let EllL be the category of elliptic

curves over L and let n ∈ N≥1. We define the categories EL(n), EL1 (n) and EL0 (n) whose
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objects are given by

EL(n) = {(E,ϕE) | E ∈ EllL and ϕE :
(
Z/nZ

)2 ∼−→ E[n](L) is an isomorphism of groups}

EL1 (n) = {(E,PE) | E ∈ EllL and PE ∈ E(L) is a point of order N }

EL0 (n) = {(E,HE) | E ∈ EllL and HE ≤ E(L) is a cyclic subgroup of order n}

and whose morphisms are given by morphisms f :E → E′ of elliptic curves such that

respectively f ◦ϕE = ϕE′ , f (PE) = PE′ and f (HE) =HE′ .

Theorem 1.10. For every n ∈ N≥3 there exist three smooth affine curves Y (n), Y0(n) and Y1(n)

defined over Q such that:

• for every extension Q ⊆ L we have two bijections

Y (n)(L)↔EL(n)/∼ and Y1(n)(L)↔EL1 (n)/∼;

• for every extension Q ⊆ L such that L is algebraically closed we have a bijection

Y0(n)(L)↔EL0 (n)/∼;

• we have three isomorphisms of Riemann surfaces

Y (n)(C) ∼=
ϕ(n)⨆
j=1

Γ(n)\h Y1(n)(C) ∼= Γ1(n)\h Y0(n)(C) ∼= Γ0(n)\h.

where ϕ(n) = #
(
Z/nZ

)×
is the Euler totient function and EL(n)/∼, EL1 (n)/∼ and EL0 (n)/∼ indi-

cate the set of isomorphism classes of objects of EL(n), EL1 (n) and EL0 (n) respectively.

Proof. See Corollary 2.7.3, Theorem 3.7.1 and Corollary 4.7.1 of [11], where the previ-

ous results are proved using the language of schemes.

Theorem 1.10 shows thus that the curves Y (n), Y1(n) and Y0(n) can be defined in

an algebraic way and that they are the solutions to three different moduli problems for

elliptic curves. Nevertheless they are still not compact, and that is why we will define in

the next section one first possible way of compactifying them.
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1.2 The Baily-Borel compactification

What we have just proved shows the necessity to find a good candidate for the com-

pactification of the Riemann surface YΓ = Γ\h. In particular we want to find a compact

Riemann surface XΓ together with an embedding ι:YΓ ↪→ XΓ such that ι(YΓ) is an open

subset of XΓ. To do so, we will extend the space h on which Γ acts by adding some points.

Observe first of all that SL2(R) acts also on P1(R) = R∪ {∞} by setting

⎛⎜⎜⎜⎜⎜⎜⎜⎝a b

c d

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∗ x = (ax0 + bx1:cx0 + dx1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
∞, if c ̸= 0 and x = −d/c or c = 0 and x =∞

a/c, if x =∞ and c ̸= 0

ax+b/cx+d , otherwise

for every
(
a b
c d

)
∈ SL2(R) and every x = (x0:x1) ∈ P1(R). Observe in particular that for

every x ∈ R we have σx ∗∞ = x where σx
def=

(
x −1
1 0

)
∈ SL2(R).

We can easily classify the fixed points of the action SL2(R) ⟳ h ∪ P1(R) using the

following proposition.

Proposition 1.11. For every matrix A =
(
a b
c d

)
∈ SL2(R) \ {±I2} we have:

• (a+ d)2 < 4 if and only if there exists z ∈ h such that A ∗ z = z. In this case A ∗w ̸= w for

every w ∈ h∪R∪ {∞} \ {z};

• (a+ d)2 = 4 if and only if there exists a unique x ∈ R∪ {∞} such that A ∗ x = x. In this

case A ∗w ̸= w for every w ∈ h∪R∪ {∞} \ {x};

• (a+d)2 > 4 if and only if there exist x,y ∈ R∪{∞} such that x ̸= y, A∗x = x and A∗y = y.

In this case A ∗w ̸= w for every w ∈ h∪R∪ {∞} \ {x,y}.

Proof. See Proposition 1.12 and Proposition 1.13 of [15].

Let now Γ ≤ SL2(R) be a subgroup. We call a point x ∈ R∪ {∞} a cusp of Γ if there

exists A =
(
a b
c d

)
∈ Γ \ {±I2} such that (a+ d)2 = 4 and A ∗ x = x and we call a point z ∈ h an

elliptic point of Γ if there exists A =
(
a b
c d

)
∈ Γ such that (a+ d)2 < 4 and A ∗ z = z. Let now

EΓ be the set of all elliptic points of Γ, PΓ be the set of all cusps of Γ and let h∗Γ = h∪PΓ.
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For every Fuchsian group Γ ≤ SL2(R) we can define a topology on the set h∗Γ by taking as

a fundamental system of neighbourhoods of a cusp s ∈ PΓ the collection

{σs ∗ ({z ∈ h |ℑ(z) > l} ∪ {∞})}l>0 where σs =
(
s 1
−1 0

)
and as a fundamental system of neighbourhoods of a point z ∈ h the usual system of

open balls {B(z;ε)}ε>0. Observe now thatℑ(σ−1
x ∗ z) =ℑ(z) · |x − z|−2 for every x ∈ R and

every z ∈ h, which implies that for every cusp s ∈ PΓ \ {∞} we have

σs ∗ {z ∈ h |ℑ(z) > l} =

⎧⎪⎪⎨⎪⎪⎩z ∈ h | |s − z| <
√
ℑ(z)
l

⎫⎪⎪⎬⎪⎪⎭ =
{
z ∈ h |

⏐⏐⏐⏐⏐s+
i

2l
− z

⏐⏐⏐⏐⏐ < 1
2l

}
and thus in particular that σs ∗Ul is an open ball of radius 1/2l whose boundary ∂Ul is

a circle tangent to the real line at the point s. It is now easy to prove that h∗Γ endowed

with this topology is an Hausdorff topological space but is not locally compact unless

PΓ = ∅. It is also easy to prove that the action Γ ⟳ h∗Γ is still continuous, which allows us

to consider the quotient topological space Γ\h∗Γ.

Theorem 1.12. Let Γ ≤ SL2(R) be a Fuchsian group. Then Γ\h∗Γ is a locally compact and

Hausdorff topological space with a natural structure of a Riemann surface. Moreover, if Γ\h∗Γ
is compact then the sets Γ\PΓ and Γ\EΓ are finite.

Proof. See Theorem 1.28, Proposition 1.29, Proposition 1.32 and Section 1.5 of [15].

There exist Fuchsian subgroups Γ ≤ SL2(R) such that the Riemann surface Γ\h∗Γ is

not compact. For instance we can take Γ =
{(

1 0
0 1

)}
or Γ =

{(
1 ∗
0 1

)}
. For further information

about this distinction, and for examples of Fuchsian groups of the second kind we refer

to [10].

Definition 1.13. For every Fuchsian group Γ ≤ SL2(R) such that the quotient Γ\h∗Γ is

compact we define the compact Riemann surface XΓ
def= Γ\h∗Γ and we call it the Baily-Borel

compactification of the modular curve YΓ

Theorem 1.16 shows that the classical modular groups are the first examples of Fuch-

sian groups of the first kind.
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Definition 1.14. Let G be a group and let H,H ′ ≤ G be two subgroups. We say that H is

commensurable with H ′ if H ∩H ′ is a subgroup of finite index of H and H ′.

Lemma 1.15. Let Γ,Γ′ ≤ SL2(R) be two commensurable subgroups. Then Γ is Fuchsian if and

only if Γ′ is Fuchsian, Γ is of the first kind if and only if Γ′ is of the first kind and PΓ = PΓ′ .

Proof. See Proposition 1.11, Proposition 1.30 and Proposition 1.31 of [15].

Theorem 1.16. The groups Γ(N ), Γ0(N ) and Γ1(N ) are Fuchsian groups of the first kind for

all N ∈ N≥1.

Proof. Use Lemma 1.15 and the fact that

[SL2(Z):Γ(N )] = #SL2

(
Z/NZ

)
=N3 ·

∏
p|N

1− 1
p2 <∞

as shown in Lemma 1.38 and the following pages of [15].

Let now h∗
def= h∗SL2(Z) and observe that Lemma 1.15 and Theorem 1.16 imply that for

every n ∈ N the topological spaces

X(N ) def= Γ(N )\h∗ X0(N ) def= Γ0(N )\h∗ and X1(N ) def= Γ1(N )\h∗

are compact and connected Riemann surfaces.

One of the problems that affect this notion of compactification is the fact that the

topological space h∗Γ is not locally compact, and that the Baily Borel compactification

of more general locally symmetric spaces is singular, as it is shown in §2.10 of [8]. The

attempt of finding a better compactification for general locally symmetric spaces led

to the notion of Borel-Serre compactification, which is the main subject of the following

section.

1.3 The Borel-Serre compactification

The Borel-Serre compactification of the affine modular curve YΓ associated to a Fuchsian

group Γ ≤ SL2(R) is a compact real two dimensional topological manifold with boundary
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whose boundary is a collection of circles S1 indexed by the set Γ\PΓ where PΓ ⊆ P1(R) is

the set of cusps of Γ. It seems at a first sight that this notion of compactification might

be slightly more disadvantageous compared to the Baily-Borel compactification, because

in this case we obtain as a result a manifold with boundary and not a Riemann surface.

Nevertheless this construction has the advantage of not involving any non locally com-

pact topological space, as we will soon understand. We will also need the Borel-Serre

compactification in the third chapter, when we will try to give an adelic description of

the compactification of our modular curves. For further details and proofs we refer to

[8] and to the original article of Borel and Serre [3].

We will start first of all with the definition of the space h∗∗Γ that we need for this

compactification. This space is obtained by glueing to h a family of lines indexed by PΓ
such that if we endow h with the Poincaré metric

ρ:h× h→ R≥0 defined as ρ(z1, z2) = 2tanh−1 |z1 − z2|
|z1 − z2|

then each line attached to a cusp parametrizes the set of all the possible geodesics of

h which end at this point. For instance if ∞ ∈ PΓ then the line at infinity will be a

parameter space for all the half lines contained in h and parallel to the imaginary axis.

Definition 1.17. Let Γ ≤ SL2(R) be a Fuchsian subgroup, and let PΓ be its set of cusps.

We define the set h∗∗Γ as

h∗∗Γ = h⊔LΓ where LΓ
def=

⨆
x∈PΓ

Lx and Lx
def= P1(R) \ {x}.

Observe first of all that we still have an action of Γ on h∗∗Γ defined as

A ∗ (x,λ) = (A ∗ x,A ∗λ) for every (x,λ) ∈ LΓ =
⨆
x∈PΓ

P1(R) \ {x}

and as the usual action on h. We endow h∗∗Γ with the coarsest topology such that the

inclusions h ↪→ h∗∗Γ and LΓ ↪→ h∗∗Γ are topological embeddings and the subsets

(σx ∗ {z ∈ h |ℑ(z) > l})∪Lx ⊆ h∗∗Γ where σx =
(
x −1
1 0

)
∈ SL2(R)

are open for every x ∈ PΓ. Observe that h∗∗Γ has a natural structure of manifold with

boundary in the sense of Definition 1.20. To define what a manifold with boundary is we

give the more general definition of manifold with corners as stated in [9].
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Definition 1.18. Let n,m ∈ N and let A ⊆ Rn and B ⊆ Rm be any two subsets. We say that

a map of sets f :A→ B is smooth if there exist an open subset U ⊆ Rn and a smooth map

g:U → Rm such that A ⊆U and g |A ≡ f .

Definition 1.19. Let X be a topological space. We define an atlas with corners of di-

mension n ∈ N on X to be a collection A = {(U,ϕ)} where U ⊆ X is an open subset and

ϕ:U → (R≥0)k × Rn−k is a homeomorphism for some k ∈ {0, . . . ,n} such that for every

other (V ,ψ) ∈ A the maps ϕ ◦ψ−1 and ψ ◦ϕ−1 are smooth homeomorphisms. We define

a manifold with corners to be a couple (X,A) where X is a Hausdorff, second countable

topological space and A is an atlas with corners which is maximal in the poset of all

n-dimensional atlases with corners on X ordered with respect to the inclusion.

We have also a definition of morphisms between manifolds with corners which is

given in Definition 3.1 of [9]. Observe now that on every n-dimensional manifold with

corners (X,A) we can define a “stratification” {Xk}nk=0. To do so we define first of all a

function

dk :Rk≥0→ {0, . . . , k} by setting dk(x1, . . . ,xk) = #{j ∈ {1, . . . , k} | xj = 0}

and then we define the sets Xk as

Xk
def= {x ∈ X | ϕ(x) = (v,w) ∈ (Rl≥0 ×R

n−l) with dk(v) = k}

where (U,ϕ) ∈ A is any chart such that x ∈ U . It is not difficult to prove that dk(v) does

not depend on the choice of (U,ϕ) and thus the sets Xk are well defined.

Definition 1.20. We say that a manifold with corners X is a smooth manifold if Xj =

∅ ⇐⇒ j > 0 and we say that it is a smooth manifold with boundary if Xj = ∅ ⇐⇒ j > 1.

It seems pointless to have introduced the complicated definition of manifold with

corners if the only thing that we need is a manifold with boundary, but this definition is

widely used in [3] and [8] to define the Borel-Serre compactification of general modular

varieties, which are the generalization of modular curves to higher dimensions.

We see that almost by definition the action Γ ⟳ h∗∗Γ is continuous with respect to this

topology, and so we can consider the topological quotient space Γ\h∗∗Γ . This space is ex-

actly the compactification that we are looking for, as we show in the following theorem.
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Theorem 1.21. Let Γ ≤ SL2(R) be a Fuchsian group of the first kind. Then the topological

space Γ\h∗∗Γ is compact and has a natural structure of manifold with boundary such that the

quotient map h∗∗Γ ↠ Γ\h∗∗Γ is a smooth map between manifolds with boundary and the inclusion

Γ\h ↪→ Γ\h∗∗Γ is an embedding of a smooth manifold inside a manifold with boundary.

Proof. Let f ⊆ h∗∗Γ be a connected fundamental domain for the action Γ ⟳ h∗∗Γ , i.e. a con-

nected subset f ⊆ h∗∗Γ such that the quotient map h∗∗Γ ↠ Γ\h∗∗Γ becomes a bijection when

restricted to f. It is not difficult to see that we can cover this fundamental domain with

a finite number of closed subsets which become compact in the quotient Γ\h∗∗Γ . Indeed

we know from Theorem 1.12 that the set Γ\PΓ is finite, and thus we can choose a finite

set of representatives S ⊆ PΓ for the quotient Γ\PΓ. Now for every s ∈ S we can choose a

sufficiently big neighbourhood of the form σs ∗ ({z ∈ C | ℑ(z) ≥ l} ∪ L∞) such that to ex-

haust f it will be sufficient to take a sufficiently wide compact rectangle [a,b]× [c,d] ⊆ f.

This proves that the fundamental domain is contained in the union of a finite number of

closed subsets, and it is not difficult to see that the projection h∗∗Γ ↠ Γ\h∗∗Γ is a homeomor-

phism when restricted to the rectangle [a,b] × [c,d] ⊆ f and sends the neighbourhoods

σs ∗ ({z ∈ C | ℑ(z) ≥ l} ∪ L∞) to compact subsets of Γ\h∗∗Γ homeomorphic to the compact

annulus {z ∈ C | 1 ≤ |z| ≤ 2}. This finally shows that the quotient Γ\h∗∗Γ is the union of

finitely many compact subsets, and thus is compact.

For a more detailed proof of Theorem 1.21 we refer to §7 and Theorem 9.3 of [3],

which prove the theorem for the more general Borel-Serre compactification of a modular

variety associated to an arithmetic group Γ, which is a subgroup of some algebraic group

G defined over Q which is commensurable to the integer points of G. In our case G = SL2

and thus we will use the following definition of arithmetic group.

Definition 1.22. Any subgroup Γ ≤ SL2(Q) is an arithmetic group if and only if it is

commensurable to SL2(Z) in the sense of Definition 1.14.

From now on for every arithmetic subgroup Γ ≤ SL2(Q) we define

CBS
Γ

def= Γ\LΓ and XBS
Γ

def= Γ\h∗∗Γ (1.1)
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and we say that XBS
Γ is the Borel-Serre compactification of the modular curve YΓ. In

particular the congruence subgroups Γ(n), Γ0(n) and Γ1(n) are arithmetic groups for all

n ∈ N.
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CHAPTER2

ADÈLES AND AFFINE MODULAR CURVES

Nothing in life is to be feared, it is only to

be understood. Now is the time to

understand more, so that we may fear less.

Marie Curie

Chapter Abstract

In this chapter we define the ring of adèles AK associated to a global field K and we

show that suitable disjoint unions of affine modular curves are homeomorphic to double

quotients of the topological group GL2(AQ)

2.1 The adèle ring

In this section we review the definition of the adèle ring AK of a number field K , which

will be the protagonist of our new description of the modular curves.

Definition 2.1. Let K be a field. We say that a function |·| :K→ R≥0 is a norm on K if⏐⏐⏐xy⏐⏐⏐ = |x|
⏐⏐⏐y⏐⏐⏐ and

⏐⏐⏐x+ y
⏐⏐⏐ ≤ |x|+ ⏐⏐⏐y⏐⏐⏐ for every x,y ∈ K and |x| = 0 if and only if x = 0. We say

that a norm |·| is non-Archimedean if
⏐⏐⏐x+ y

⏐⏐⏐ ≤max(|x| ,
⏐⏐⏐y⏐⏐⏐) and we say that |·| is Archimedean

otherwise.
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Definition 2.2. Let K be a field and let |·| be a norm on K. We say that a sequence

{xn}+∞n=1 ⊆ K is a Cauchy sequence for |·| if for every ε > 0 there exists n0 ∈ N such that

|xn − xm| < ε for every n,m ≥ n0. We say that |·| is equivalent to another norm |·|′ defined

on K if every sequence {xn}+∞n=1 ⊆K is a Cauchy sequence for |·| if and only if it is a Cauchy

sequence for |·|′.

It can be shown that two norms |·|1 and |·|2 defined on the same field K are equivalent

if and only if there exists α ∈ R>0 such that |·|2 = |·|α1 . Moreover if |·|1 is equivalent to |·|2
then |·|1 is Archimedean if and only if |·|2 is Archimedean. We will denote by ΣK the set

of all the places of K, i.e. the set of all the equivalence classes of norms defined on K, and

we will denote by Σ∞K the set of the equivalence classes of the non-Archimedean norms.

The following theorem of Ostrowski characterizes the set ΣK when K is a number field.

Definition 2.3. Let K be a number field and let IK be the set of all possible embeddings

K ↪→ C. Then we define an equivalence relation on IK by saying that σ ∼ τ if and only if

σ = τ or σ = τ , where (−):C→ C is the complex conjugation.

Theorem 2.4. Let K be a number field, and denote by ∥·∥ :C→ R≥0 the usual absolute value.

Then the maps

Σ∞K → Spec(OK ) \ {0}

[|·|] ↦→ {x ∈ OK | |x| < 1}
and

IK /∼→ ΣK \Σ∞K

σ ↦→ ∥·∥ ◦ σ
(2.1)

are bijections.

Proof. See [7].

To define the adèle ring AK we have to define the completions of a field with re-

spect to a norm defined on it. We say that a normed field (K, |·|) is complete if every

Cauchy sequence converges, i.e. if for every Cauchy sequence {xn} ⊆ K there exists l ∈ K

such that |xn − l| → 0 when n→ +∞. Let now (K, |·|K) be a normed field and let (F, |·|F)

be a complete normed field with a fixed inclusion of normed fields ι:K ↪→ F such that

|ι(x)|F = |x|K for every x ∈ K. We say that F is a completion of K if for every inclusion

of normed fields f : (K, |·|K) ↪→ (L, |·|L) with the property that for every Cauchy sequence

{xn} ⊆ K the sequence {f (xn)} ⊆ L converges there exists a unique inclusion of normed
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fields f̂ : (F, |·|F) ↪→ (L, |·|L) such that f = f̂ ◦ ι. It can be shown that for every field K and

every place v ∈ ΣK there exists a completion Kv which is unique up to a unique iso-

morphism of normed fields. For example the completion of Q with respect to the usual,

Euclidean absolute value is the field of the real numbers R and the completion of Q with

respect to the p-adic absolute value |·|p is the field Qp of p-adic numbers.

The last notion that we need to define the ring of adèles of a number field K is the

notion of restricted product of topological spaces. Let {Xi}i∈I be a family of topological

spaces and let {Yi}i∈I be another family of topological spaces such that Yi is a subspace

of Xi for every i ∈ I . Then we define the restricted product
∏′
i∈I (Xi :Yi) by setting

∏
i∈I

′
(Xi :Yi)

def=

⎧⎪⎪⎨⎪⎪⎩(ai) ∈
∏
i∈I

Xi | {i ∈ I | ai ∈ Xi \Yi} is finite

⎫⎪⎪⎬⎪⎪⎭
and we endow it with the topology generated by the basis made of sets of the form∏
i∈I Ui such that Ui ⊆ Xi are open and Ui = Yi for all but finitely many i ∈ I .

Let now (K, |·|) be a non-Archimedean normed field. We define the ring of integers OK

and its maximal ideal mK by setting

OK
def= {x ∈K | |x| ≤ 1} and mK

def= {x ∈K | |x| < 1}

and we observe that (OK,mK) is a discrete valuation ring if (K, |·|) is a non-Archimedean

local field, i.e. it is complete and |K×| ≤ R>0 is a non trivial discrete subgroup. In particu-

lar, if K is a number field and v ∈ Σ∞K , then the completion Kv is a non-Archimedean local

field with ring of integers OKv , whereas if v ∈ ΣK \Σ∞K we define OKv
def= Kv . Using these

conventions we can define the ring of adèles AK of a number field K as the restricted

product

AK
def=

∏
v∈ΣK

′
(Kv :OKv ) with the operations

(av) + (bv) = (av + bv)

(av) · (bv) = (av · bv)

defined for every pair of sequences (av)v∈ΣK , (bv)v∈ΣK ∈ AK . With these operations and

this topology the ring AK becomes a topological ring, i.e. a ring which is also a topologi-

cal space such that all the operations are continuous.

We can give also another description of the adèle ring AK using the topological ring
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ÔK defined as

ÔK
def= lim←−−
I⊆OK

OK
I

= lim←−−
N∈N≥1

OK
NOK

∼= Ẑ⊗ZOK with Ẑ def= lim←−−
N∈N≥1

Z
NZ

which is called the profinite completion of the ring of integers OK . The topology on ÔK is

defined as the coarsest topology such that for every ideal I ⊆ OK the map ÔK ↠ OK/I is

continuous. We want now to prove that there exists a canonical isomorphism

AK ∼= (Ôk ⊗OK K)× (K ⊗QR)

as topological rings, where the topology on Ôk ⊗OK K is the strongest topology such that

the map

Ôk ×K → Ôk ⊗OK K (x,y) ↦→ x⊗ 1 + 1⊗ y

is continuous. To prove our claim we define A∞K
def=

∏′
v∈Σ∞K

(Kv :OKv ) and we observe that

AK = A∞K × (K ⊗Q R) since K ⊗Q R ∼= Rr1 ×Cr2 where r1 = #{K ↪→ R} and r1 + 2r2 = [K :Q].

Now we have to prove that A∞K ∼= Ôk ⊗OK K and to do so it is sufficient to observe that

Ôk ⊗OK K ∼= Ôk ⊗OK

⎛⎜⎜⎜⎜⎜⎜⎝ lim−−→
N∈N≥1

OK
[ 1
N

]⎞⎟⎟⎟⎟⎟⎟⎠ ∼= lim−−→
N∈N≥1

Ôk ⊗OK OK
[ 1
N

]
∼= lim−−→
N∈N≥1

⎛⎜⎜⎜⎜⎜⎜⎝∏
p∋N

Kp ×
∏
p ̸∋N
OKp

⎞⎟⎟⎟⎟⎟⎟⎠
where for every prime ideal p ∈ Spec(OK )\ {0} we define Kp as the completion of the field

K with respect to the place vp ∈ Σ∞K which corresponds to p through the bijection defined

in Equation 2.1.

2.2 Properties of the adèle ring

The aim of this section is to recall some further generalities about adèle rings that we

will use in the next section to find a relationship between AQ and affine modular curves.

Thus let K be a number field and observe that the canonical embeddings K ↪→ Kv for

every v ∈ Σ∞K give rise to the diagonal embeddings K ↪→ A∞K and K ↪→ AK . Indeed for

every x/y∈ K with x,y ∈ OK we have that x ∈ pv or y ∈ pv for only finitely many places

v ∈ Σ∞K , where pv ∈ Spec(OK ) is the prime ideal corresponding to v through the bijection

defined in Equation 2.1, and thus x ∈ OKv for all but finitely many places v ∈ Σ∞K . It is
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not difficult to see that the image of this embedding K ↪→ AK is discrete, whereas for

every finite subset ∅ ̸= S ⊆ ΣK the image of the embedding

K ↪→ ASK where ASK
def=

∏
v∈ΣK
v /∈S

′
(Kv :OKv )

is dense, as it is proved in §II.15 of [6]. We refer to this result by saying that the affine

line A1 satisfies strong approximation away from the subset S ⊆ ΣK . More generally for

every algebraic variety X over a number field K and for every subset S ⊆ ΣK we have the

inclusions

X(K) ↪→ X(ASK ) ↪→
∏

v∈ΣK\S
X(Kv) (2.2)

and we say that X satisfies weak approximation away from S if X(K) is dense in the prod-

uct
∏
v∈ΣK\SX(Kv) whereas we say that X satisfies strong approximation away from S if

X(K) is dense in X(ASK ). Observe that the inclusions mentioned in (2.2) are continuous

but the topology on X(ASK ) is finer than the subspace topology induced by the inclu-

sion X(ASK ) ↪→
∏
v∈ΣK\SX(Kv). For further information and for a precise definition of the

topology of X(ASK) we refer to §5.1 and §7.1 of [14].

Lemma 2.5. The algebraic group SLn over a number field K satisfies strong approximation

away from any finite set ∅ ̸= S ⊆ ΣK .

Proof. Let G be the closure of SLn(K) inside SLn(ASK ). Since K is dense in ASK we see

immediately that G contains all the matrices of the form In + x ·Ei,j for i ̸= j, where In is

the n×n identity matrix, x ∈ ASK and Ei,j = (ek,l) with ek,l = 0 if (k, l) ̸= (i, j) and ei,j = 1.

Recall now that for every field F the group SLn(F) is generated by the matrices of the

form In + y ·Ei,j where i ̸= j and y ∈ F as it is proved in Proposition 17 of Chapter III.8

of [4]. Let now M ∈ SLn(ASK ) and for every v ∈ ΣSK let Mv ∈ SLn(Kv) be the image of M via

the canonical projection SLn(ASK ) ↠ SLn(Kv). What we have proved shows that for every

v0 ∈ ΣSK G contains all the matricesM ∈ SLn(ASK ) such thatMv = In for every v ∈ ΣSK \{v0}.

Since the closure of a subgroup in a topological group is again a subgroup this implies

that G contains all the matrices M ∈ SLn(ASK ) such that Mv = In for all but finitely many

v ∈ ΣSK .
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To conclude it is sufficient to recall that a basis of open subsets for the topological

space SLn(ASK ) is given by the sets of the form
∏
v∈ΣSK

Uv where Uv ⊆ SLn(Kv) is open

for every v ∈ ΣSK and Uv = SLn(OKv ) for all but finitely many v ∈ ΣSK . Since each of the

elements of this basis contains at least one matrix M ∈ SLn(ASK ) such that Mv = In for all

but finitely many v ∈ ΣSK we have that G = SLn(ASK ) because G is closed and contains the

dense subset of all the matrices M ∈ SLn(ASK ) such that Mv = In for all but finitely many

v ∈ ΣSK .

Corollary 2.6. Let K be a number field, and let S ⊆ ΣK be a finite and non-empty subset.

Then for every open subgroup U ≤ SL2(ASK ) we have that SL2(ASK ) = SL2(K) ·U .

We recall finally that the embedding K ↪→ A∞K is also used in §II.19 of [6] to prove

that
A∞,×K

K× · ÔK
×
∼= Cl(OK ) (2.3)

where Cl(OK ) is the ideal class group of the Dedekind domain OK , defined as the multi-

plicative group of all fractional ideals I ⊆ K = Frac(OK ) quotiented out by the subgroup

of all principal fractional ideals xOK ⊆ K . In particular this implies that

A∞,×Q = Q× · Ẑ× = Q>0 · Ẑ× ∼= Q>0 × Ẑ×

since Z is a principal ideal domain and Q>0 ∩ Ẑ× = {1}.

Consider now the topological group GL2(A∞Q ) and take any compact and open sub-

group K∞ ≤ GL2(A∞Q ). The following lemma will be used in the next section to show

that a disjoint union of [Ẑ×:det(K∞)] affine modular curves is homeomorphic to a suit-

able double quotient which involves GL2(A∞Q ) and K∞.

Lemma 2.7. For every compact and open subgroup K∞ ≤ GL2(A∞Q ) we have that det(K∞) ⊆

Ẑ×, the quotient Ẑ×/det(K∞) is finite and discrete and we have a homeomorphism

Q×\
(
{±1} ×A∞,×Q /det(K∞)

) ∼= Ẑ×

det(K∞)

where the actions Q× ⟳ {±1} ×A∞,×Q ⟲ det(K∞) are defined as

α ∗ (ε,x) ∗ β = (sign(α) · ε,α · x · β).
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Proof. Recall first of all that Ẑ× is the unique maximal compact subgroup of A∞,×Q . Since

the determinant map is continuous and K∞ is compact by hypothesis, this implies that

det(K∞) ≤ Z×.

It is now easy to see from the definition of the action of Q× that

Q×\
(
{±1} ×A∞,×Q /det(K∞)

) ∼= Q>0\A
∞,×
Q /det(K∞) ∼=

Ẑ×

det(K∞)

where the last isomorphism comes from the fact that A∞,×Q = Q>0 · Ẑ× as we have showed

in Equation 2.3.

We finally prove that det(K∞) ≤ Ẑ is open. Observe first of all that det(K∞) is com-

pact since K∞ ≤ GL2(A×Q) is compact and the determinant map is continuous, and thus

det(K∞) ≤ Ẑ× is a closed subgroup because Ẑ× is an Hausdorff topological space. Since

the group Ẑ× is a profinite group we have only to prove that det(K∞) ≤ Ẑ× is a subgroup

of finite index. To show this we observe that the subgroups

K(n) def=
{
A ∈GL2(Ẑ) | A ≡

(
1 0
0 1

)
mod n

}
= ker

(
GL2(Ẑ) ↠ GL2

(
Z/nZ

))
form a basis of open neighbourhoods of the identity in GL2(A∞Q ). Moreover it is not

difficult to show that

det(K(n)) = {x ∈ Ẑ× | x ≡ 1 mod n} = ker
(
Ẑ×↠

(
Z/nZ

)×)
which implies finally that det(K∞) ≤ Ẑ× is a subgroup of finite index because det(K(n))

is a subgroup of finite index in Ẑ× and det(K(n)) ≤ det(K∞).

Using thus the fact that Ẑ× is compact and that det(K∞) ≤ Ẑ× is open we see that the

quotient Ẑ×/det(K∞) is compact and discrete, and thus finite, as we wanted to prove.

2.3 An adelic description of affine modular curves

We are now ready to prove the main theorem of this chapter, which for every com-

pact and open subgroup K∞ ≤GL2(A∞Q ) describes a homeomorphism between the topo-

logical disjoint union of [Ẑ×:det(K∞)] affine modular curves and the double quotient

GL2(Q)\GL2(AQ)/(K∞ ×R>0 × SO2(R)). All the material in this section is not original,

and can also be found in [12].
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Let now K∞ ≤ GL2(A∞Q ) be a compact and open subgroup, let n = [Ẑ×:det(K∞)] and

let {Aj}nj=1 ⊆ GL2(Ẑ) be any set of matrices such that {det(Aj )}nj=1 = Ẑ×/det(K∞). We de-

fine the subgroups Γj ≤ SL2(Q) as Γj
def= Aj · K∞ · A−1

j ∩ SL2(Q) and we observe that Γj

is an arithmetic subgroup for every j = 1, . . . ,n. Indeed every two compact and open

subgroups H,H ′ ⊆GL2(A∞Q ) are commensurable, since the quotients

H
H ∩H ′

and
H ′

H ∩H ′

are compact and discrete, and thus finite. This implies that Aj · K∞ · A−1
j is commen-

surable with SL2(Ẑ) for every j ∈ {1, . . . ,n} and hence that Γj = Aj ·K∞ ·A−1
j ∩ SL2(Q) is

commensurable with SL2(Z) = SL2(Ẑ)∩ SL2(Q) for every j ∈ {1, . . . ,n}.

Observe now that every Γj contains the principal congruence subgroup Γ(mj ) for

some mj ∈ N. Indeed we have already shown in the proof of Lemma 2.7 that the sub-

groups K(m) = ker
(
GL2(Ẑ) ↠ GL2

(
Z/mZ

))
form a basis of open neighbourhoods of the

identity in GL2(A∞Q ). This implies in particular that there exist {m1, . . . ,mn} ⊆ N such that

K(mj ) ≤ Aj ·K∞ ·A−1
j for every j ∈ {1, . . . ,n}. Thus Γ(mj ) ≤ Γj because K(mj )∩ SL2(Q) =

Γ(mj ).

We define now the topological space YK∞ as

YK∞
def=

n⨆
j=1

YΓj =
n⨆
j=1

Γj\h

and we observe that YK∞ is well defined up to homeomorphisms due to different choices

of the matrices {Aj}. The goal of this section is to provide a homeomorphism

YK∞ ∼= GL2(Q)\GL2(AQ)/(K∞ ×R>0 × SO2(R))

and to do so we start with a lemma concerning subgroups of SL2(A∞Q ) where we don’t

have problems coming from the determinant.

Lemma 2.8. LetU ≤ SL2(A∞Q ) be a compact and open subgroup and let Γ =U∩SL2(Q). Then

Γ is an arithmetic group and the map

ϕ:h→ h× SL2(A∞Q ) defined as ϕ(z) =
(
z,
(

1 0
0 1

))
induces a homeomorphism ϕ:Γ\h ∼−→ SL2(Q)\

(
h× SL2(A∞Q )/U

)
.
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Proof. Let z,w ∈ h, and let π:h×SL2(A∞Q )→ SL2(Q)\(h×SL2(A∞Q )/U ) be the quotient map.

Then for every z,w ∈ h we have π(ϕ(z)) = π(ϕ(w)) if and only if there exist A ∈ SL2(Q)

and B ∈ U such that w = A ∗ z and A · B = I2. This shows that A = B−1 ∈ U ∩ SL2(Q) = Γ

and thus that π(ϕ(z)) = π(ϕ(w)) if and only if there exists A ∈ Γ such that w = A ∗ z. This

implies that ϕ is well defined and injective.

Let now (z,A) ∈ h×SL2(A∞Q ) and observe that we can write A = X ·Y where X ∈ SL2(Q)

and Y ∈U because SL2(A∞Q ) = SL2(Q) ·U as proved in Corollary 2.6. Then we have

π(X−1 ∗ z, I2) = π(z,A) because (z,A) = (z,X ·Y ) = X ∗ (X−1 ∗ z, I2) ∗Y

and thus we see that ϕ(X−1 ∗ z) = π(z,A), which implies that ϕ is surjective.

To conclude we have to prove that ϕ is continuous and open. First of all observe that

ϕ is clearly continuous and thus ϕ is continuous. Observe moreover that SL2(A∞Q )/U is a

discrete topological space because U ⊆ SL2(A∞Q ) is open, and thus the map

h→ h× SL2(A∞Q )/U z ↦→
(
z,
[(

1 0
0 1

)])
induced by ϕ is open, which implies that ϕ is a continuous and open bijection, and thus

it is a homeomorphism.

Theorem 2.9. Let K∞ ≤GL2(A∞Q ) be a compact and open subgroup and let

h±
def= {z ∈ C |ℑ(z) ̸= 0} ∼= h× {±1}.

Then the maps ϕj :h → h± ×GL2(A∞Q ) defined as ϕj(x) = (x,Aj ) induce a homeomorphism

YK∞
∼−→GL2(Q)\

(
h± ×GL2(A∞Q )/K∞

)
.

Proof. Observe now that for every j ∈ {1, . . . ,n} the map

Γj\h ∼−→ SL2(Q)\h× SL2(A∞Q )/(SL2(A∞Q )∩Aj ·K∞ ·A−1
j )

[z] ↦→ [z, I2]

is a homeomorphism, as proved in Lemma 2.8. Observe moreover that the map

h× SL2(A∞Q )→ h× SL2(A∞Q ) (z,X) ↦→ (z,X ·Aj )
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is clearly a homeomorphism, and induces a homeomorphism

Γj\h ∼−→ SL2(Q)\
(
h× SL2(A∞Q ) ·Aj /(SL2(A∞Q )∩K∞)

)
[z] ↦→ [z,Aj ]

where the right action SL2(A∞Q ) ·Aj ⟲ K∞ ∩ SL2(A∞Q ) is defined as (X ·Aj ) ∗Y = X ·Y ′ ·Aj
where Y ′ = Aj ·X ·A−1

j . Using these facts we only have to prove that

GL2(Q)\
(
h± ×GL2(A∞Q )/K∞

) ∼= n⨆
j=1

SL2(Q)\
(
h× SL2(A∞Q ) ·Aj /(SL2(A∞Q )∩K∞)

)
to conclude.

To do so we observe first of all that the surjective map

h± ×GL2(A∞Q ) ↠ {±1} ×A∞,×Q (z,A) ↦→ (sign(ℑ(z)),det(A))

induces a surjective map ψ:GL2(Q)\
(
h± ×GL2(A∞Q )/K∞

)
↠ Q×\

(
{±1} ×A∞,×Q /det(K∞)

)
.

Let now

π:h± ×GL2(A∞Q ) ↠ GL2(Q)\
(
h± ×GL2(A∞Q )/K∞

)
π′: {±1} ×A∞,×Q ↠Q×\{±1} ×A∞,×Q /det(K∞

be the quotient maps and observe that for every x ∈ A∞,×Q we have

ψ−1(π′(+1,x)) = SL2(Q)\
(
h× SL2(A∞Q ) ·A/(SL2(A∞Q )∩K∞)

)
where A ∈GL2(A∞Q ) is any matrix such that det(A) = x.

Indeed let G be any group and let X and Y be two sets with a left action of G. Let

moreover f :X→ Y be a map such that f (g ∗ x) = g ∗ f (x) for every x ∈ X and g ∈ G. Then

f induces a map

f :G\X→ G\Y and for every y ∈ Y we have
(
f
)−1

(G · y) = Gy\f −1(y)

where Gy = {g ∈ G | g ∗ y = y} ≤ G is the stabilizer of y in G, and the analogous statement

is true if G acts from the right on X and Y . We can first of all apply this statement to the

map of left GL2(Q)-sets

h± ×GL2(A∞Q )→ {±1} ×A∞,×Q (z,A) ↦→ (sign(ℑ(z)),det(A))
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to conclude that for every x ∈ A∞,×Q the fiber of the induced map

GL2(Q)\h± ×GL2(A∞Q )→Q×\{±1} ×A∞,×Q (2.4)

over Q× ·(+1,x) is given by SL2(Q)\h×SL2(A∞Q ) ·A, where A ∈GL2(A∞Q ) is any matrix such

that det(A) = x. Now if we view the map (2.4) as a map between two right K∞-sets we

see immediately that for every x ∈ A∞,×Q the stabilizer of Q× · (+1,x) in K∞ is given by

K∞ ∩ SL2(A∞Q ) and thus the fiber over π′(+1,x) of ψ is indeed given by

SL2(Q)\
(
h× SL2(A∞Q ) ·A/(SL2(A∞Q )∩K∞)

)
where A ∈GL2(A∞Q ) is any matrix such that det(A) = x.

To conclude it is now sufficient to recall that

Q×\
(
{±1} ×A∞,×Q /det(K∞)

) ∼= Ẑ×

det(K∞)

as we have proved in Lemma 2.7, which implies that the fibers of ψ are both open and

closed, because the topological space Q×\
(
{±1} ×A∞,×Q /det(K∞)

)
is discrete. This implies

in turn that the fibers of ψ are the connected components of GL2(Q)\
(
h± ×GL2(A∞Q )/K∞

)
because we have proved that they are homeomorphic to Γj\h and thus they are con-

nected. This shows indeed that
n⨆
j=1

Γj\h ∼=
n⨆
j=1

SL2(Q)\
(
h× SL2(A∞Q ) ·Aj /(SL2(A∞Q )∩K∞)

) ∼= GL2(Q)\
(
h± ×GL2(A∞Q )/K∞

)
as we wanted to prove.

We can now apply Theorem 2.9 to the group K∞ = K(n) = ker
(
GL2(Ẑ) ↠ GL2

(
Z/nZ

))
to get a homeomorphism( Z

nZ

)×
×Y (n) ∼= GL2(Q)\

(
h± ×GL2(A∞Q )/K(n)

)
.

In the same way we can define the subgroups

K1(n) def= π̂−1
n

({(
1 ∗
0 1

)})
and K0(n) def= π̂−1

n ({( ∗ ∗0 ∗ )})

where π̂n:SL2(Ẑ) ↠ SL2(Z/nZ) is the reduction map. If we do so we obtain two homeo-

morphisms( Z
nZ

)×
×Y1(n) ∼= GL2(Q)\

(
h± ×GL2(A∞Q )/K1(n)

)
Y0(n) ∼= GL2(Q)\

(
h± ×GL2(A∞Q )/K(n)

)
.
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Observe now that the adelic quotients GL2(Q)\GL2(AQ)/K are defined over the ratio-

nal numbers, whereas the curves Γ\h are usually defined over extensions of the rational

numbers. In particular if πn:SL2(Z) ↠ SL2

(
Z/nZ

)
is the reduction map, H ≤ GL2

(
Z/nZ

)
is any subgroup and ΓH

def= π−1
n

(
H ∩ SL2

(
Z/nZ

))
then the Riemann surface ΓH\h can be

viewed as an affine curve naturally defined over Q(ζn)det(H). Thus the curves Y (n) and

Y1(n) are naturally defined over Q(ζn) whereas Y0(n) is naturally defined over Q.

Observe finally that the product h± ×GL2(A∞Q ) can also be described in a completely

adelic way. To show this we need a general lemma which concerns the action G ⟳ X of a

topological group G on a topological space X.

Lemma 2.10. Suppose that X is a locally compact and Hausdorff topological space, and that

G is a locally compact and second countable topological group. Suppose moreover that G acts

continuously and transitively on X. Then for every x ∈ X the map

G/Gx→ X [g] ↦→ g ∗ x where Gx
def= {g ∈ G | g ∗ x = x}

is a homeomorphism.

Proof. See Theorem 1.1 of [15].

Consider now the action GL2(R) ⟳ h± and observe first of all that the map

R>0 × SO2(R)→GL2(R)i = {A ∈GL2(R) | A ∗ i = i} (α,M) ↦→ α ·M

is an isomorphism, and so we obtain that

h± ∼= GL2(R)/K∞ where K∞
def= R>0 × SO2(R)

by applying the previous Lemma 2.10. Observe finally that AQ = R×A∞Q and so we have

h± ×GL2(A∞Q ) ∼= (GL2(R)/K∞)×GL2(A∞Q ) ∼= GL2(AQ)/K∞ (2.5)

since GL2(AQ) ∼= GL2(R) ×GL2(A∞Q ). Thus for every compact and open subgroup K∞ ≤

GL2(A∞Q ) we have

YK∞ ∼= GL2(Q)\GL2(AQ)/K

where K = K∞ ×K∞.
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To conclude we observe that we have a homeomorphism Y ∼= GL2(Q)\GL2(AQ)/K∞,

where

Y
def= lim←−−

K∞
YK∞ ∼= lim←−−

n

YK(n)
∼= lim←−−

n

( Z
nZ

)×
×Y (n) ∼= Ẑ× × lim←−−

n

Y (n)

is the projective limit of all the affine modular curves. To prove this we will use the

following general lemma.

Lemma 2.11. Let G be a topological group which acts continuously from the right on a T1

topological space X, and let {Gi}i∈I be an inverse system of compact subgroups of G. Then the

natural map
X⋂
Gi
→ lim←−−

I

X
Gi

[x] ↦→ (x)i∈I (2.6)

is bijective.

Proof. For every x,y ∈ X we have (x)i∈I = (y)i∈I in lim←−−X/Gi if and only if for every i ∈ I

there exists gi ∈ Gi such that x∗gi = y. This implies that the sets {g ∈ Gi | x∗g = y} form an

inverse system of non-empty subsets ofG which are also compact because the subgroups

Gi are compact and the points of X are closed. Thus using Cantor’s intersection theorem

we obtain that (x)i∈I = (y)i∈I if and only if there exists g ∈
⋂
Gi such that x ∗g = y, which

proves that the map (2.6) is injective.

Let now ([xi]) ∈ lim←−−X/Gi . Since the action X ⟲ G is continuous and all the subgroups

Gi ≤ G are compact the orbits {xi ∗Gi} form an inverse system of non-empty compact

subsets of X. Thus using again Cantor’s intersection theorem we can take x ∈
⋂
xi ∗Gi and

observe that the map (2.6) sends [x] ∈ X/
⋂
Gi to ([xi]) ∈ lim←−−X/Gi .

Now it is sufficient to apply Lemma 2.11 to X = GL2(Q)\GL2(AQ)/K∞ to obtain that

lim←−−GL2(Q)\GL2(AQ)/K∞ ×K∞ ∼= GL2(Q)\GL2(AQ)/K∞.

Indeed
⋂
K∞ =

{(
1 0
0 1

)}
because

⋂
nẐ = {0} and thus

⋂
K(n) =

{(
1 0
0 1

)}
.

Moreover, for every compact and open subgroup K∞ ≤ GL2(A∞Q ) we have that YK∞ ∼=

Y /K∞. These results are precisely the results that we would like to generalize to compact

modular curves, and the next chapter is entirely devoted to this aim.
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CHAPTER3

ADELIC DESCRIPTIONS OF COMPACTIFIED MODULAR

CURVES

One day I will find the right words, and

they will be simple.

Jack Kerouac

Chapter Abstract

In this chapter we give a completely adelic description of the classical set of cusps Γ\PΓ
and of the topological spaces CBS

Γ and XBS
Γ associated to the Borel-Serre compactification

of the affine modular curve YΓ.

3.1 Equivalence classes of cusps and spaces of finite adèles

The first section of this chapter is devoted to giving an adelic description of the set Γ\PΓ,

where Γ ≤ SL2(Q) is a congruence subgroup in the sense of the following definition.

Definition 3.1. A subgroup Γ ≤ SL2(Q) is a congruence subgroup if there exists a compact

and open subgroup U ≤ SL2(A∞Q ) such that Γ =U ∩ SL2(Q).
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It is important to recall that every congruence subgroup of SL2(Q) is an arithmetic

subgroup (i.e. it is commensurable with SL2(Z)), but the converse is not true. Moreover

every congruence subgroup contains a principal subgroup Γ(n) for some n ∈ N, as we

proved in Theorem 2.9. This implies that

cusps(Γ) = cusps(SL2(Z)) = Q∪ {∞} = P1(Q)

as it is proved in Proposition 1.30 and on page 14 of [15].

Let now K∞ ≤GL2(A∞Q ) be a compact and open subgroup and define

CK∞
def=

n⨆
j=1

CΓj =
n⨆
j=1

Γj\P1(Q) where Γj
def= Aj ·K∞ ·A−1

j ∩ SL2(Q)

and {Aj}nj=1 ⊆GL2(Ẑ) is any set of matrices such that {det(Aj )}nj=1 ⊆ Ẑ× is a set of represen-

tatives for the quotient Ẑ×/det(K∞). The aim of this section is to define a topological space

W (A∞Q ) with two actions GL2(Q) ⟳ W (A∞Q ) ⟲ GL2(A∞Q ) such that CK∞ ∼= C/K∞ where

C
def= GL2(Q)\W (A∞Q ). Observe that we could take W (A∞Q ) = (P1(Q) × {±1}) ×GL2(A∞Q ) as

follows easily from Lemma 3.11, where on P1(Q) we take the discrete topology. The

problem with this definition is that the quotient GL2(Q)\GL2(A∞Q ) is not locally com-

pact. Thus to give a better definition ofW (A∞Q ) we will introduce some new notation in

the following pages.

Definition 3.2. Let R be a commutative ring. We denote by R2
prim the set of all ( ab ) ∈ R2

such that Ra+Rb = R.

Observe that we have a left action GL2(R) ⟳ R2
prim induced by the natural action

GL2(R) ⟳ R2. Indeed if
(
x
y

)
∈ R2

prim and
(
a b
c d

)
∈ GL2(R) then ad − bc ∈ R× and there exist

r, s ∈ R such that rx+ sy = 1, which implies that(
rd − sc
ad − bc

)
· (ax+ by) +

(
sa− rb
ad − bc

)
· (cx+ dy) = 1

and thus that
(
ax+by
cx+dy

)
=

(
a b
c d

)
·
(
x
y

)
∈ R2

prim. Observe finally that we clearly have a right

action R2
prim ⟲ R× defined as

(
x
y

)
∗α =

(
α·x
α·y

)
.

It is a problem in general to define an appropriate topology on R2
prim if R is a topo-

logical ring. Nevertheless if K is a global field and S ⊆ ΣK is finite and non-empty we
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see that

(ASK )2
prim =

∏
v∈ΣSK

′
((Kv)2

prim: (OKv )
2
prim)

as sets. For every v ∈ ΣK we define the topology on (Kv)2
prim to be the subspace topology

from K2
v and then we define the topology on (ASK )2

prim as the restricted product topology.

Definition 3.3. For every ring R and every n,m ∈ N≥1 we denote withMn,m(R) the set of

n ×m matrices with coefficients in R. If R is a topological ring we endowMn,m(R) with

the topology induced by the bijectionMn,m(R)↔ Rn·m.

Definition 3.4. Let R be a commutative Q-algebra, i.e. a commutative ring with unity

with a morphism of rings Q→ R. We define the set W (R) as

W (R) = {
(
a b
c d

)
∈M2,2(R) : Ra+Rb+Rc+Rd = R and there exists (α:β) ∈ P1(Q)

such that α · (a,b) + β · (c,d) = (0,0)}.

Observe that we have two actions GL2(Q) ⟳W (R) ⟲ GL2(R). Indeed let (x yz w ) ∈W (R),(
a b
c d

)
∈GL2(Q) and

(
e f
g h

)
∈GL2(R), and suppose that

α · (a,b) + β · (c,d) = (0,0)

for some (α · β) ∈ P1(Q). Then(
a b
c d

)
· (x yz w ) =

(
ax+bz ay+bw
cx+dz cy+dw

)
and (x yz w ) ·

(
e f
g h

)
=

(
ex+gy f x+hy
ez+gw f z+hw

)
and clearly α · (ex + gy,f x + hy) + β · (ez + gw,f z + hw) = (0,0), which implies that GL2(R)

acts from the right on W (R). Moreover if
(
γ
δ

)
=

(
a b
c d

)−1
·
(
α
β

)
∈ Q2 then it is easy to prove

that γ · (ax+bz,ay+bw)+δ · (cx+dz,cy+dw) = (0,0), which implies that GL2(Q) acts from

the left on W (R).

The problem is now to give the correct topology to the set W (R). Observe first of all

that for every matrix A ∈W (R) there exists a unique (α:β) ∈ P1(Q) such that (α,β) ·A =

(0,0). This implies that

W (R) =
⨆

(α:β)∈P1(Q)

{(αx αy
βx βy

)
:
(
x
y

)
∈ R2

prim

}
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and thus that we have a bijection W (R) ↔
⨆

P1(Q)R
2
prim. If we have defined a suitable

topology on R2
prim (as we did before when R = ASK ) we define the topology on W (R) as

the unique topology such that this bijection is a homeomorphism.

We are now almost ready to introduce the fundamental result of this section. We

would like to start from any compact and open subgroup K∞ ≤ GL2(A∞Q ) but in the

current context we needed to restrict ourselves to integral subgroups, i.e. to subgroups

K∞ ≤GL2(Ẑ). This is not a problem as we prove in the following lemma.

Lemma 3.5. Let K∞ ≤GL2(A∞Q ) be a compact and open subgroup. Then there exists a matrix

A ∈GL2(Q) such that A ·K∞ ·A−1 ⊆GL2(Ẑ). Moreover if we consider any matrix B ∈GL2(Ẑ)

and we define

Γ def= B ·K∞ ·B−1 ∩ SL2(Q) and Γ′ def= B · (A ·K∞ ·A−1) ·B−1 ∩ SL2(Q)

then the maps

h→ h

P1(Q)→ P1(Q)
and

h∗→ h∗

h∗∗→ h∗∗
defined as x ↦→ A ∗ x

induce isomorphisms YΓ ∼−→ YΓ′ , Γ\P1(Q) ∼−→ Γ′\P1(Q), XΓ
∼−→ XΓ′ and XBS

Γ
∼−→ XBS

Γ′ .

Proof. We can write K∞ =
∏
pK
∞
p where K∞p ≤ GL2(Qp) for every prime number p ∈ N

and since K∞ is compact and open we have that K∞p = GL2(Zp) for all but finitely many

prime numbers {p1, . . . ,pn} ⊆ Z. It is now not difficult to prove that for every j ∈ {1, . . . ,n}

there exists a matrix Aj ∈ GL2(Q) such that Aj ∈ GL2(Zq) for every prime q ̸= pj and

Aj ·K∞pj ·A
−1
j ≤GL2(Zpj ). This implies that we can take A = A1 · · ·An to have A ·K∞ ·A−1 ⊆

GL2(Ẑ). The rest of the proof is straightforward.

Using the previous lemma we can assume that K∞ ≤ GL2(Ẑ) without loss of gen-

erality, and we can prove the following results which describe the set CK∞ as a double

quotient of the adelic space W (A∞Q )×A∞,×Q . Observe that all the homeomorphisms in the

proofs of Lemma 3.6 and Theorem 3.7 are between discrete topological spaces: it is thus

sufficient to prove that these maps are bijective to prove that they are homeomorhpisms.
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Lemma 3.6. Let U ≤ SL2(Ẑ) be a compact and open subgroup and let Γ def= U ∩ SL2(Q). Then

the inclusion map Q ↪→ A∞Q induces homeomorphisms

Γ\P1(Q) ∼−→U\(A∞Q )2
prim/Q

× ∼= U\Ẑ2
prim/{±1}.

Proof. Observe first of all that Γ ≤ SL2(Z) because SL2(Q)∩ SL2(Ẑ) = SL2(Z). Moreover

since the action SL2(Q) ⟳ P1(Q) is transitive we can apply Lemma 2.10 to show that the

map

SL2(Q)→ P1(Q)

⎛⎜⎜⎜⎜⎜⎜⎜⎝a b

c d

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ↦→
⎛⎜⎜⎜⎜⎜⎜⎜⎝a b

c d

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∗∞ = (a:c)

induces a homeomorphism SL2(Q)/SL2(Q)∞ ∼−→ P1(Q) where

SL2(Q)∞
def= {A ∈ SL2(Q) | A ∗∞ =∞} =

{(
a b
c d

)
∈ SL2(Q) | c = 0

}
=

{(
a b
0 a−1

)
| a ∈Q×, b ∈Q

}
is the stabilizer of {∞} under the action SL2(Q) ⟳ P1(Q) and the topologies on SL2(Q)

and P1(Q) are discrete. Observe now that the inclusion map SL2(Q) ↪→ SL2(A∞Q ) induces

a homeomorphism

Γ\SL2(Q)/SL2(Q)∞ ∼−→U\SL2(A∞Q )/SL2(Q)∞

because SL2(A∞Q ) = U · SL2(Q) as we proved in Lemma 2.5. Observe moreover that the

map

SL2(A∞Q )→ (A∞Q )2
prim defined as

⎛⎜⎜⎜⎜⎜⎜⎜⎝a b

c d

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ↦→
⎛⎜⎜⎜⎜⎜⎜⎜⎝ac

⎞⎟⎟⎟⎟⎟⎟⎟⎠
induces a homeomorphism U\SL2(A∞Q )/SL2(Q)∞ ∼−→ U\(A∞Q )2

prim/Q
×. Observe finally

that the inclusion map Ẑ ↪→ A∞Q induces a homeomorphism Ẑ2
prim/{±1} ∼= (A∞Q )2

prim/Q
×.

Using all the homeomorphisms that we defined in this proof we finally obtain two home-

omorphisms

Γ\P1(Q) ∼−→U\(A∞Q )2
prim/{±1} ∼−→U\Ẑ2

prim/{±1}

such that the first one is induced by the inclusion Q2
prim ↪→ (A∞Q )2

prim.

Theorem 3.7. Let K∞ ≤GL2(Ẑ) be a compact and open subgroup and consider any minimal

set of matrices {Aj}nj=1 ⊆GL2(A∞Q ) such that Ẑ×/det(K∞)= {det(Aj )}nj=1. Let now

K∞j
def= Aj ·K∞ ·A−1

j ∩ SL2(Ẑ) and Γj
def= SL2(Q)∩K∞j
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and define the map

(−)(j): (A∞Q )2
prim→ (A∞Q )2

prim

(
x
y

)
↦→

(
x(j)

y(j)

)
def= A−1

j ·
(
x
y

)
.

Then the map

n⨆
j=1

Q2
prim→W (A∞Q )×A∞,×Q defined as

(
j,
(
x
y

))
↦→

(
det(Aj )

−1 ·
( 0 0
−y(j) x(j)

)
,det(Aj )

)
induces a homeomorphism CK∞

∼−→GL2(Q)\
(
W (A∞Q )×A∞,×Q

)
/K∞, where the actions

GL2(Q) ⟳W (A∞Q )×A∞,×Q ⟲ K∞

are defined as A ∗ (X,α) ∗B = (A ·X ·B,det(A) ·α ·det(B)).

Proof. Using the previous Lemma 3.6 we obtain immediately a homeomorphism

n⨆
j=1

Γj\P1(Q) =
n⨆
j=1

Γj\Z2
prim/{±1} ∼−→

n⨆
j=1

K∞j \Ẑ
2
prim/{±1}

induced by the inclusion Z2
prim ↪→ Ẑ2

prim.

Observe now that the map

n⨆
j=1

Ẑ2
prim→ Ẑ2

prim × Ẑ
× (j,v) ↦→

(
A−1
j · v,det(Aj )

)
(3.1)

induces a homeomorphism
⨆n
j=1K

∞
j \Ẑ

2
prim/{±1} ∼−→ K∞\

(
Ẑ2

prim/{±1} × Ẑ×
)
, where the ac-

tion K∞ ⟳ Ẑ2
prim × Ẑ× is defined as A ∗ (v,α) = (A · v,det(A) · α). Indeed let (i,v), (j,w) ∈⨆n

j=1 Ẑ
2
prim and suppose that

ε ·M ·A−1
i · v = A−1

j ·w and det(Ai) = det(M) ·det(Aj )

for some M ∈ K∞ and ε ∈ {±1}. The second equation implies that i = j and det(M) = 1

because by hypothesis {det(Aj )}nj=1 is a set of representatives for the quotient Ẑ×/det(K∞).

The first equation can thus be written as v = (Aj ·M ·A−1
j ) ·w ·ε and we have Aj ·M ·A−1

j ∈

K∞j because det(Aj ·M · A−1
j ) = det(M) = 1. This implies that the map (3.1) induces a

well defined and injective map
⨆n
j=1K

∞
j \Ẑ

2
prim/{±1} ↪→ K∞\

(
Ẑ2

prim/{±1} × Ẑ×
)
. Let now

(v,α) ∈ Ẑ2
prim × Ẑ×. Since again by definition we have that Ẑ×/det(K∞)= {det(Aj )}nj=1 there
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exists a matrix M ∈ K∞ such that det(M) ·α = det(Aj ) for a unique j ∈ {1, . . . ,n}. Thus the

map
n⨆
j=1

Ẑ2
prim→ K∞\

(
Ẑ2

prim/{±1} × Ẑ×
)

given by the composition of (3.1) with the quotient map

Ẑ2
prim × Ẑ

×↠ K∞\
(
Ẑ2

prim/{±1} × Ẑ×
)

sends (j,Aj ·M ·v) to the equivalence class of (v,α) in the quotient K∞\
(
Ẑ2

prim/{±1} × Ẑ×
)
.

This implies that the injective map
⨆n
j=1K

∞
j \Ẑ

2
prim/{±1} ↪→ K∞\

(
Ẑ2

prim/{±1} × Ẑ×
)

in-

duced by (3.1) is also surjective, and thus it is a homeomorphism because it is clearly

continuous and open.

To conclude it is sufficient to prove that the map

Ẑ2
prim × Ẑ

×→W (A∞Q )×A∞,×Q

((
x
y

)
,α

)
↦→

(
α−1 ·

(
0 0
−y x

)
,α

)
(3.2)

induces a homeomorphism K∞\
(
Ẑ2

prim/{±1} × Ẑ×
)
∼−→GL2(Q)\W (A∞Q )×A∞,×Q /K∞. Indeed

let
((
x
y

)
,α

)
, (( zw ),β) ∈ Ẑ2

prim × Ẑ× and suppose that

A ·α−1 ·
(

0 0
−y x

)
·B = β−1 · ( 0 0

−w z ) and det(A) ·α ·det(B) = β

for some A =
(
a1 a2
a3 a4

)
∈GL2(Q) and B =

(
b1 b2
b3 b4

)
∈ K∞. The first equation implies that a2 = 0

and the second equation implies that det(A) = a1 ·a4 ∈Q×∩ Ẑ× = Z× = {±1}. Moreover the

first equation can be written as(
x
y

)
= a4 ·α · β−1 ·

(
b4 −b2
−b3 b1

)
· ( zw ) = a−1

1 ·B
−1 · ( zw ) with

(
x
y

)
,B−1 · ( zw ) ∈ Ẑ2

prim

which implies that a1 ∈ Q× ∩ Ẑ× = {±1} and thus that the map (3.2) induces a well de-

fined and injective map K∞\
(
Ẑ2

prim/{±1} × Ẑ×
)
↪→GL2(Q)\

(
W (A∞Q )×A∞,×Q

)
/K∞. Let now

(M,α) ∈W (A∞Q ) ×A∞,×Q . By the definition of W (A∞Q ) there exists (a,b) ∈ P1(Q) such that

(a,b) ·M = (0,0). We also know that there exists c ∈ Q× such that c · α ∈ Ẑ×. Thus if we

define A =
(
a b
0 ca−1

)
if a ̸= 0 and A =

(
0 −c
1 0

)
if a = 0 then A ∈GL2(Q) and

A ∗ (M,α) =
((

0 0
x y

)
,β

)
with β ∈ Ẑ× and

(
x
y

)
∈ (A∞Q )2

prim by the definition of W (A∞Q ). If we now take d ∈ Q× such

that d ·
(
x
y

)
∈ Ẑ2

prim and we define A′ =
(
d−1 0
0 d

)
·A ∈GL2(Q) then

A′ ∗ (M,α) = ((0 0
z w ),β)
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with ( zw ) = d ·
(
x
y

)
∈ Ẑ2

prim. This shows that the map

Ẑ2
prim × Ẑ

×→GL2(Q)\
(
W (A∞Q )×A∞,×Q

)
/K∞

given by the composition of (3.2) and the quotient map

W (A∞Q ) ↠ GL2(Q)\
(
W (A∞Q )×A∞,×Q

)
/K∞

sends (β · ( w−z ),β) to the class of (M,α) in GL2(Q)\
(
W (A∞Q )×A∞,×Q

)
/K∞. This implies

that the map K∞\
(
Ẑ2

prim/{±1} × Ẑ×
)
↪→ GL2(Q)\

(
W (A∞Q )×A∞,×Q

)
/K∞ induced by (3.2) is

a homeomorphism, because it is bijective and it is clearly continuous and open.

What we have proved shows that if we defineW (R) def=W (R)×R× for every topological

commutative Q-algebra R then we have that

CK∞ ∼= C/K∞ where C
def= GL2(Q)\W (A∞Q )

for every compact and open subgroup K∞ ≤GL2(A∞Q ).

3.2 A real problem

Our aim for this section is now to replace the ring of the finite adéles A∞Q with AQ in what

we have proved in section 3.1. In particular we will find a relationship between the set

CK∞ and the double quotient GL2(Q)\W (AQ)/K where K = K∞ × K∞ ⊆ GL2(AQ) with

K∞
def= R>0 · SO2(R) ≤ GL2(R). We did so in the aim to use the adelic description of YK∞

given in section 2.3 to obtain an adelic description of the Baily-Borel compactification

XK∞
def=

⨆n
j=1Γj\h∗. This is not possible using the spaceW (AQ) because Theorem 3.8 tells

us that the double quotient GL2(Q)\W (AQ)/K is not compact.

Theorem 3.8. Let K∞ ≤GL2(Ẑ) be a compact and open subgroup and consider any minimal

set of matrices {Aj}nj=1 ⊆ GL2(A∞Q ) such that Ẑ×/det(K∞)= {det(Aj )}nj=1. Define now the groups

K∞j
def= Aj ·K∞ ·A−1

j ∩ SL2(Ẑ) and Γj
def= SL2(Q)∩K∞j and the map

(−)(j): (A∞Q )2
prim→ (A∞Q )2

prim

(
x
y

)
↦→

(
x(j)

y(j)

)
def= A−1

j ·
(
x
y

)
.
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Then the map
⨆n
j=1Q

2
prim ×R

2
prim ×R>0→W (AQ)×A×Q defined as

(j, (x,y), (z,w), t) ↦→
((

det(Aj )
−1 ·

( 0 0
−y(j) x(j)

)
, t−1 · ( 0 0

−w z )
)
,det(Aj ) · t

)
induces a homeomorphism

⨆n
j=1Γj\P1(Q)×R>0

∼−→GL2(Q)\W (AQ)/K .

Proof. Using Lemma 3.6 and the homeomorphism induced by (3.1) we obtain immedi-

ately a homeomorphism

n⨆
j=1

Γj\P1(Q)×R2
prim ×R>0

∼−→ R2
prim ×R>0 ×K∞\

(
Ẑ2

prim/{±1} × Ẑ×
)

which is the identity on R2
prim×R>0. Observe moreover that we have a natural left action

K∞ ⟳ R2
prim ×R>0 defined as A ∗ (v, t) = (A · v,det(A) · t) and that the inclusion

R>0 ↪→ R2
prim ×R>0 t ↦→

((
1
0

)
, t
)

induces a homeomorphism R>0
∼−→ K∞\

(
R2

prim ×R>0

)
.

Consider now the map

Ẑ2
prim ×R

2
prim × Ẑ

× ×R>0→W (AQ)×A×Q((
x∞
y∞

)
,
(
x∞
y∞

)
, t∞, t∞

)
↦→

(
t−1 ·

(
0 0
−y x

)
, t
) (3.3)

where
(
x
y

)
=

((
x∞
y∞

)
,
(
x∞
y∞

))
∈ (AQ)2

prim = (A∞Q )2
prim ×R

2
prim and t = (t∞, t∞) ∈ A×Q = A∞,×Q ×R×.

To conclude we have to prove that (3.3) induces a homeomorphism

K∞\
(
Ẑ2

prim/{±1} × Ẑ×
)
×K∞\

(
R2

prim ×R>0

)
∼−→GL2(Q)\W (AQ)/K.

Let
((
x∞
y∞

)
, t∞

)
,
((
z∞
w∞

)
, s∞

)
∈ R2

prim ×R>0 and suppose that

A · t−1
∞ ·

(
0 0
−y∞ x∞

)
·B = s−1

∞ ·
(

0 0
−w∞ x∞

)
and det(A) · t∞ ·det(B) = s∞

for some A =
(
a1 a2
a3 a4

)
∈GL2(Q) and B ∈ K∞. The first equation implies that a2 = 0 and it is

equivalent to the fact that (
x∞
y∞

)
= a−1

1 ·B
−1 ·

(
z∞
w∞

)
with a−1

1 ·B−1 ∈ K∞. This fact together with what we proved in Theorem 3.7 implies that

the map (3.3) induces a well defined and injective map

K∞\
(
Ẑ2

prim/{±1} × Ẑ×
)
×K∞\

(
R2

prim ×R>0

)
↪→GL2(Q)\W (AQ)/K.
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Let now (M,t) ∈W (AQ) ×A×Q and suppose that t = (t∞, t∞) with t∞ ∈ A∞,×Q and t∞ ∈ R×.

We know by the definition of W (AQ) that there exists (a,b) ∈ P1(Q) such that (a,b) ·M =

(0,0). We also know that there exists c ∈Q× such that c · t∞ ∈ Ẑ× and c · t∞ ∈ R>0. Thus if

we define A =
(
a b
0 ca−1

)
if a ̸= 0 and A =

(
0 −c
1 0

)
if a = 0 then A ∈GL2(Q) and

A ∗ (M,t) =
((

0 0
x y

)
, s
)

where s = (s∞, s∞) ∈ A∞,×Q ×R×

with s∞ ∈ Ẑ×, s∞ ∈ R>0 and
(
x
y

)
∈ (AQ)2

prim by the definition of W (AQ). Suppose now that(
x
y

)
=

((
x∞
y∞

)
,
(
x∞
y∞

))
∈ (A∞Q )2

prim ×R
2
prim and take d ∈ Q× such that d ·

(
x∞
y∞

)
∈ Ẑ2

prim. Then if

we define A′ =
(
d−1 0
0 d

)
·A ∈GL2(Q) we have that

A′ ∗ (M,α) = ((0 0
z w ), s)

with ( zw ) = d ·
(
x
y

)
∈ Ẑ2

prim. This shows that the map

Ẑ2
prim ×R

2
prim × Ẑ

× ×R>0→GL2(Q)\W (AQ)/K

given by the composition of (3.3) with the quotient map W (AQ) ↠ GL2(Q)\W (AQ)/K

sends
(
s∞ ·

(
x∞
y∞

)
, s∞ ·

(
x∞
y∞

)
, s∞, s∞

)
to the class of (M,α) in GL2(Q)\W (AQ)/K . Observe

finally that the maps

(AQ)2
prim ×A

×
Q→ (AQ)2

prim((
x
y

)
, t
)
↦→ t−1 · (−yx )

(AQ)2
prim→W (AQ)(
x
y

)
↦→

(
0 0
x y

) (3.4)

are continuous and open. This implies that the bijective map

K∞\
(
Ẑ2

prim/{±1} × Ẑ×
)
×K∞\

(
R2

prim ×R>0

)
→GL2(Q)\W (AQ)/K.

is continuous and open, and thus it is a homeomorphism.

Theorem 3.8 shows indeed that the space W ×Gm is not the right space to use if we

want to describe XK∞ using the ring of adèles AQ. Actually it seems that maybe the

Baily-Borel compactification was not the right compactification to look at. In the follow-

ing sections we will look at the Borel-Serre compactification XBS
K∞ and we will obtain a

completely adelic description of them.
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3.3 Adèles and the Borel-Serre cusps

This section is devoted to finding a new space related to the full adèle ring AQ and using

it to describe the disjoint union
⨆n
j=1C

BS
Γj

where Γj ≤ SL2(Q) are the arithmetic groups

related to a compact and open subgroup K∞ ≤ GL2(A∞Q ) that we defined in section 2.3

and CBS
Γj

are the “Borel-Serre cusps” that we defined in (1.1). To do so we will first

of all find a topological space C(AQ) with a left action of GL2(Q) and a right action of

K∞ = R>0 × SO2(R) such that for every compact and open subgroup K∞ ≤ GL2(A∞Q ) we

will have a homeomorphism CBS
K∞
∼= CBS/K∞ where CBS = GL2(Q)\C(AQ)/K∞ and

CBS
K∞

def=
n⨆
j=1

Γj\L with
n = [Ẑ×:det(K∞)]

L =
⨆

x∈P1(Q)

P1(R) \ {x}

is the set that needs to be “glued” to the affine modular curve YK∞ =
⨆n
j=1Γj\h to obtain

its Borel-Serre compactification, as we described in section 1.3.

We see from this description that, similarly to what we have done for affine modular

curves, we should have a homeomorphism CBS ∼= Ẑ× × lim←−−nΓ(n)\L because

CBS ∼= lim←−−C
BS/K∞ ∼= lim←−−

n

CBS/K(n) ∼= lim←−−
n

CBS
K(n)
∼=

∼= lim←−−
n

(
Z/nZ

)×
× Γ(n)\L ∼= Ẑ× × lim←−−

n

Γ(n)\L.

To study the topological space lim←−−nΓ(n)\L we prove a general lemma concerning the

action of a group on a topological space and its possible profinite completions.

Lemma 3.9. Let G be a topological group and let X be a topological space endowed with

a continuous action G ⟳ X. Let moreover {Hj}j∈J be an inverse system of closed normal

subgroups of G. Then the map⎛⎜⎜⎜⎜⎜⎜⎝lim←−−
j∈J

Hj\G

⎞⎟⎟⎟⎟⎟⎟⎠×X→ lim←−−
j∈J

Hj\X
(
(gj )j∈J ,x

)
↦→ (g−1

j ∗ x)j∈J (3.5)

induces a homeomorphism G\
(
lim←−−j∈J Hj\G

)
×X ∼−→ lim←−−j∈J Hj\X where the left action G ⟳(

lim←−−j∈J Hj\G
)
×X is defined as h ∗

(
(gj ),x

)
=

(
(h · gj ),h ∗ x

)
.
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Proof. It is clear that the map (3.5) is continuous and open, so we have only to show that

it induces a bijective map G\
(
lim←−−j∈J Hj\G

)
×X ∼−→ lim←−−j∈J Hj\X. To do so let

(
(gj ),x

)
,
(
(hj ), y

)
∈

⎛⎜⎜⎜⎜⎜⎜⎝lim←−−
j∈J

Hj\G

⎞⎟⎟⎟⎟⎟⎟⎠×X
and suppose that g−1

j ∗x = h−1
j ∗y ∈Hj\X, ∀j ∈ J for some k ∈ G. We see immediately that

this happens if and only if there exists k ∈ G such that x = k ∗ y and gj · h−1
j = k for every

j ∈ J , which is true if and only if
(
(gj ),x

)
and

(
(hj ), y

)
are equivalent under the action

G ⟳
(
lim←−−j∈J Hj\G

)
×X.

Observe now that for every j ∈ J we have a surjective map Hj\X ↠ G\X. These

maps induce clearly a well defined and surjective map π: lim←−−j∈J Hj\X ↠ G\X. Let now

ξ = (Hj ∗ xj )j∈J ∈ lim←−−j∈J Hj\X and let x ∈ X be any element such that G ∗ x = π(ξ). This

implies that G ∗ xj = G ∗ x for every j ∈ J and thus that for every j ∈ J there exists gj ∈ G

such that gj ∗ x = xj . Observe that for every i, j ∈ J such that Hi ≤ Hj we have that

Hj ∗ xi = Hj ∗ xj and this implies that we can choose the elements {gj}j∈J ⊆ G such that

(gj )j∈J ∈ lim←−−j∈J Hj\G. Thus the map (3.5) is surjective, because for every ξ ∈ lim←−−j∈J Hj\X

the couple
(
(gj )j∈J ,x

)
that we have just defined is mapped to ξ by construction.

We can now apply the lemma to the inverse system {Γ(n)}n∈N≥1
of subgroups of SL2(Z)

acting on the topological space L to obtain a homeomorphism

lim←−−
n∈N

Γ(n)\L ∼−→ SL2(Z)\
(
L× SL2(Ẑ)

)
.

It is now easy to check that the map

Ẑ× ×L× SL2(Ẑ)→L×GL2(Ẑ) (α,λ,A) ↦→
(
λ,A ·

(
1 0
0 α

))
induces a homeomorphism Ẑ× × SL2(Z)\

(
L× SL2(Ẑ)

)
∼−→ SL2(Z)\

(
L×GL2(Ẑ)

)
and that

the map

L×GL2(Ẑ)→L± ×GL2(A∞Q )

(λ,A) ↦→ ((λ,1),A)
where L± def= L× {±1}

induces a homeomorphism SL2(Z)\
(
L×GL2(Ẑ)

)
∼−→GL2(Q)\

(
L± ×GL2(A∞Q )

)
. Putting to-

gether all the homeomorphisms we see that

Ẑ× × lim←−−
n∈N

Γ(n)\L ∼= GL2(Q)\
(
L± ×GL2(A∞Q )

)
(3.6)
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which is already a partially adelic description of the topological space C(AQ) which

should be used to describe the topological spaces

CK∞
def=

n⨆
j=1

Γj\L ∼=
n⨆
j=1

(Γj\P1(Q))× S1 where n = [Ẑ×:det(K∞)]

as quotients CK∞ ∼= C(AQ)/K∞.

We look now for a description of the topological space L± as a quotient B(R)±/K∞

where B(R) is a topological space related to the real numbers R which will be the archi-

medean component of C(AQ). We define the topological space B(R) as

B(R) def=
⨆

x∈P1(Q)

Bx where B(x0:x1)
def= {M ∈M2,2(R) | det(M) = 0, (−x1,x0) ·M ̸= (0,0)}

where each Bx has the subspace topology induced by the inclusion Bx ↪→M2,2(R) and

B(R) has the disjoint union topology. Observe that for every x ∈ Q we have Bx = σx ·B∞
where σx ∈ SL2(Q) is any matrix such that σx ∗∞ = x. Observe moreover that for every

matrix M =
(
a b
c d

)
∈ B∞ we have that (0,1) ·M = (c,d) ̸= (0,0). This allows us to define a

family of maps ϕx:Bx→ P1(R) \ {x} by defining

ϕ∞:B∞→ L∞
(
a b
c d

)
↦→ ac+ bd

c2 + d2 =ℜ
(
ai + b
ci + d

)
(3.7)

and then by setting ϕx(M) def= σx ∗ϕ∞(σ−1
x ·M).

Lemma 3.10. The maps {ϕx} allow us to define a map

B(R)±→L± (x,ε,M) ↦→ (x,ε,ϕx(M)) where B(R)± def= B(R)× {±1} (3.8)

which induces a homeomorphism B(R)±/K∞ ∼−→L±.

Proof. Observe first of all that the map

R×R2
prim→ B∞ (λ,v) ↦→

⎛⎜⎜⎜⎜⎜⎜⎜⎝λ · vv

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.9)

is a homeomorphism and that the map R ×R2
prim → L∞ = R given by the composition

of ϕ∞ and (3.9) is simply the projection onto the first factor. This shows that ϕ∞ is

continuous and open and that it induces a homeomorphism B∞/K∞
∼−→ L∞ because the

map (3.9) is invariant under the right action R2
prim ⟲ K∞ which is transitive.
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It is now sufficient to observe that for every x ∈ P1(Q) the homeomorphism

B∞→ Bx M ↦→ σx ·M

is equivariant with respect to the right action of K∞ and that the square

B∞ L∞

Bx Lx

ϕ∞

σx·(−) σx∗(−)
ϕx

commutes to conclude that ϕx induces a homeomorphism Bx/K∞
∼−→ Lx for every x ∈

P1(Q) and thus that (3.8) induces a homeomorphism B(R)±/K∞ ∼−→ L± as we wanted to

prove.

Using now Lemma 3.10 and (3.6) we see that

Ẑ× × lim←−−
n∈N

Γ(n)\L ∼= GL2(Q)\B(R)± ×GL2(A∞Q )/K∞

which implies that we can define C(AQ) def= B(R)± ×GL2(A∞Q ) to have a homeomorphism

CBS
K∞
∼= CBS/K∞ ∼= GL2(Q)\C(AQ)/K where K = K∞ ×K∞

for every compact and open subgroup K∞ ≤ GL2(A∞Q ). This definition is still not com-

pletely satisfactory because it separates the archimedean part and the non-archimedean

part in the definition of C(AQ) but it seems to us difficult if not impossible to avoid this,

as we will explain in the conclusions.

3.4 The full Borel-Serre compactification

We will use now what we have proved in the previous section to give an adelic descrip-

tion of the full Borel-Serre compactified modular curve XBS
K∞ associated to a compact and

open subgroup K∞ ≤GL2(A∞Q ) which is defined as the disjoint union

XBS
K∞

def=
[Ẑ×:det(K∞)]⨆

j=1

XBS
Γj
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where XBS
Γj

= Γj\h∗∗ is the Borel-Serre compactification of YΓj = Γj\h defined in sec-

tion 1.3. As we did in the previous section we will find a topological space Z(AQ)

with two actions GL2(Q) ⟳ Z(AQ) ⟲ K∞ such that if XBS def= GL2(Q)\Z(AQ)/K∞ then

XBS
K∞
∼= XBS/K∞ for every compact and open subgroup K∞ ≤GL2(A∞Q ).

To do so we prove first of all the following lemma, which is related to what we have

proved in section 2.3.

Lemma 3.11. Let T be any connected topological space with a left action SL2(Q) ⟳ T and let

K∞ ≤ GL2(A∞Q ) be a compact and open subgroup. Let moreover {Aj}nj=1 ⊆ GL2(A∞Q ) be any

minimal set of matrices such that Ẑ×/det(K∞)= {det(A1), . . . ,det(An)}. If we define

K∞j
def= Aj ·K∞ ·A−1

j ∩ SL2(A∞Q ) Γj
def= SL2(Q)∩K∞j and T ±

def= T × {±1}

then the maps

ϕj :T → T ± ×GL2(A∞Q ) defined as ϕj(t) = ((t,1),Aj )

induce a homeomorphism
⨆n
j=1Γj\T ∼−→GL2(Q)\T ± ×GL2(A∞Q )/K∞.

Proof. The proof is exactly the same as the one that we did in the case T = h which is

contained in Lemma 2.8 and Theorem 2.9.

Observe now that we could have applied Lemma 3.11 to the case T = L to obtain

immediately the homeomorphism (3.6) but we preferred to show that this homeomor-

phism can be obtained also in a more “intrinsic” way by looking at the inverse limit

lim←−−nΓ(n)\L. Nevertheless we will now apply Lemma 3.11 to the case T = h∗∗ to obtain a

homeomorphism

XBS ∼= lim←−−
n

XBS
K(n)
∼= lim←−−

n

GL2(Q)\
(
(h∗∗)± ×GL2(A∞Q )/K(n)

) ∼= GL2(Q)\(h∗∗)± ×GL2(A∞Q ).

Now, as we did in the previous section, we will find a topological space G(R) with a right

action of K∞ such that (h∗∗)± ∼= G(R)±/K∞. To do so we define

U(x0:x1)
def= {M ∈M2,2(R) | det(M) ≥ 0, (−x1,x0) ·M ̸= (0,0)} for every x ∈ P1(Q)

endowed with the subspace topology induced by the inclusion Ux ↪→M2,2(R). Now we

set G(R) def=
(⨆

x∈P1(Q)Ux
)
/∼ where (x,A) ∼ (y,B) if and only if A,B ∈ GL+

2 (R) and A = B.
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Observe that for every x ∈ P1(Q) we have Ux = GL+
2 (R)⊔ Bx as sets but not as topolog-

ical spaces. This implies that we have a bijection G(R)↔ GL+
2 (R)⊔ B(R) such that the

inclusions

GL+
2 (R) ↪→G(R) and B(R) ↪→G(R)

are continuous. This bijection is not a homeomorphism, which is the key fact to prove

the next fundamental result of this paper.

Theorem 3.12. Using the functions {ϕx} defined in (3.7) we can define two maps

GL+
2 (R)→ h(
a b
c d

)
↦→ ac+ bd

c2 + d2 +
c2 + d2

ad − bc
· i

and
B(R)→L

(x,M) ↦→ (x,ϕx(M))
(3.10)

which induce a homeomorphism G(R)/K∞ ∼−→ h∗∗.

Proof. Let now x ∈ P1(Q) and let σx ∈ SL2(Q) be any matrix such that σx ∗ ∞ = x. We

define a map

Ψx:Ux→ h⊔Lx M ↦→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M ∗ i, if M ∈GL+

2 (R)

ϕx(M), if M ∈ Bx

using the fact that Ux = GL+
2 (R)⊔Mx as sets. Observe now that for every x ∈ P1(Q) the

maps

mx:U∞→Ux M ↦→ σx ·M

are homeomorphisms such that the square

U∞ L∞ ⊔ h

Ux Lx ⊔ h

Ψ∞

mx σx∗(−)
Ψx

is always commutative and mx(GL+
2 (R)) = GL+

2 (R). Thus to conclude it is sufficient to

prove that Ψ∞ induces a homeomorphism U∞/K∞
∼−→ L∞ ⊔ h.

To do so we observe that the map

ρ:L∞ ⊔ h→ {z ∈ C |ℑ(z) ≥ 0} x ↦→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℜ(x) +ℑ(x)−1 · i, if x ∈ h

x+ 0 · i, if x ∈ L∞ = R
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is a homeomorphism, as it is immediate to prove if we recall the definition of the topol-

ogy on L∞ ⊔ h given in section 1.3. Moreover we have that

ρ ◦Ψ∞:U∞→ {z ∈ C |ℑ(z) ≥ 0}
(
a b
c d

)
↦→ ac+ bd

c2 + d2 +
ad − bc
c2 + d2 · i =

ai + b
ci + d

is clearly continuous and open. Moreover it induces a bijective map U∞/K∞ → {z ∈ C |

ℑ(z) ≥ 0} because we already know that the maps

GL+
2 (R)/K∞→ h[(

a b
c d

)]
↦→ ai + b

ci + d

and
B∞/K∞→ R[(

a b
c d

)]
↦→ ac+ bd

c2 + d2

are well defined and bijective and that U∞ = GL+
2 (R)⊔B∞ as sets.

What we have proved shows that we can define Z(AQ) def= G(R)± ×GL2(A∞Q ) to have a

homeomorphism

XBS
K∞ =

n⨆
j=1

Γj\h∗∗ ∼= GL2(Q)\Z(AQ)/K where n = [Ẑ×:det(K∞)] and K = K∞ ×K∞

for every compact and open subgroup K∞ ≤ GL2(A∞Q ). In particular we have three con-

tinuous maps

Y ↪→ XBS

CBS ↠ C

CBS ↪→ XBS

where

Y = GL2(Q)\GL2(AQ)/K∞

CBS = GL2(Q)\C(AQ)/K∞

XBS = GL2(Q)\Z(AQ)/K∞

and C = GL2(Q)\W (A∞Q )

such that

Y ↪→ XBS is an open embedding

CBS ↠ C is a continuous surjection

CBS ↪→ XBS is a closed embedding

and the squares

Y XBS

YK∞ XBS
K∞

CBS C

CBS
K∞ CK∞

CBS XBS

CBS
K∞ XBS

K∞

commute for every compact and open subgroup K∞ ≤GL2(A∞Q ).
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CONCLUSIONS

I may not have gone where I intended to

go, but I think I have ended up where I

needed to be.

Douglas Adams

The aim of this thesis that we outlined in the introduction was to find a description

of the projective limit of compactified modular curves as a quotient of the form

GL2(Q)\X (AQ)/K∞

for some topological space X (AQ). Unfortunately we have not been able to do so for

the projective limit lim←−−nX(n) of classical compact modular curves because there is no

clear way to extend the homeomorphism lim←−−nΓ(n)\P1(Q) ∼= GL2(Q)\W (A∞Q ) to the en-

tire projective limit lim←−−nΓ(n)\X(n) as we explained in section 3.2. We turned then our

attention to the “less classical” Borel-Serre compactifications XBS(n) and we could find

a topological space Z(AQ) such that lim←−−nX
BS(n) ∼= GL2(Q)\Z(AQ)/K∞ as we outlined in

section 3.4.

These results leave us with some unanswered questions. It would be interesting for

instance to know more about the definition of the space Z(AQ) and to try to make it

more symmetric in the archimedean and non archimedean parts of the ring of adèles.

Another interesting fact is that the archimedean part B(R)± of Z(AQ) is defined as a
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disjoint union over P1(Q), which seems to be a manifestation of the “global nature” of

the compactification of a modular curve, since P1(Q) parametrizes all the parabolic sub-

groups of GL2(Q). It would finally be of great interest to understand adelic automorphic

forms on the space XBS = GL2(Q)\Z(AQ) as a generalisation of the notion of adelic auto-

morphic forms for the quotient Y = GL2(Q)\GL2(AQ) which is outlined in Chapter 7 of

[5].
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