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CHAPTER 1

Introduction

The goal of this work is to provide a higher genus analog of Edixhoven’s construction [2, Appendix]
of Bertrand’s [2] counter-example to Pink’s relative Manin-Mumford conjecture (cf. Section for the
statement of the conjecture). This is done in Chapter [4] where further discussion of the conjecture and
past work can be found. To give our construction, we must first develop the theory of pinchings a la
Ferrand [8] in flat families and understand the behavior of the relative Picard functor for such pinchings,
and this is the contents of Chapter [3] In Chapter [2] we recall some of the results and definitions we will
need from algebraic geometry; the reader already familiar with these results should have no problem
beginning with Chapter [3| and referring back only for references and to fix definitions. Similarly, the
reader uninterested in the technical details of pinching should have no problem beginning with Chapter
[ and referring back to Chapter [3| only for the statements of theorems.

The author would like to thank his advisor, Professor Bas Edixhoven, for his invaluable advice,
insight, help, and guidance, as well as Professor Robin de Jong and Professor Lenny Taelman for serving
on the exam committee and for their many helpful comments and suggestions, and Professor Daniel
Bertrand and Valentin Zakharevich for helpful conversations.



CHAPTER 2

Preliminaries

2.1. Conventions and notation

We make several notational remarks: if X and Y are both schemes over a base S, we will often
denote by Xy the fibered product X xg Y, especially when we are considering it as a base extension
from S to Y. We will denote the structure sheaf of a ringed space X by Ox, or just O if the ringed
space in question is clear. The symbol £ will almost always denote an invertible sheaf, except in part
of Section where it will also be used for quasi-coherent sheaves and general Ox—modules. If D is a
Cartier divisor then by O(D) we mean the invertible subsheaf of the sheaf of rational functions generated
locally by a local equation for —D. By a variety we will mean a reduced scheme of finite type over a
field.

2.2. Algebraic curves

Definition 2.1. Let S be a scheme. A relative curve X/S is a morphism X — S separated and locally
of finite presentation whose geometric fibers are reduced, connected, and 1-dimensional. If the base
scheme S is the spectrum of a field, we will call X a curve. A relative curve X/S is semistable if it is
flat, proper, and the geometric fibers of X have only ordinary double points.

Note that by this definition a curve over a field is always geometrically connected. By a standard
result, a smooth proper curve over a field is projective (one can prove this quickly using Riemann—Roch).

2.2.1. Divisors on curves. Let k be an algebraically closed field and let X/k and Y/k be smooth
proper curves. If a: X — Y is a non-constant morphism, then it is a finite surjective morphism and it
induces two homomorphisms of the corresponding divisor groups: the pullback a* and the pushforward
Q.

If D is a divisor on Y, then the pullback of D by « is defined as

a*D = Z ’Up(fa(p)OOé)P
PeX(k)

where fg for Q € Y is any rational function defining D in a neighborhood of Q. If f is a rational
function on Y then o*Divf = Div(f o @), and thus o* induces a morphism between the divisor class
groups (which agrees with the morphism a* defined on the Picard group when the usual identification
is made between the divisor class group and Picard group).

If D is a divisor on X, then the pushforward of D by « is defined as

a.D= Y wvp(D)a(P).

PeX (k)

(where vp D is just the coefficient of P in D). If f is a rational function on X, then o, Divf = DivNorm,, f
where Norm,, is the norm map of the field extension K(X)/K(Y), and thus «, induces a morphism
between the divisor class groups. It follows from the definitions that a,a™ as a map from DivX — DivX
is multiplication by deg a.

More generally, if a : X — Y is any finite surjective map of regular integral varieties then we obtain
in this way maps a* and a, on their Weil divisors.

For a divisor D on a curve X we denote by SuppD the support of D, that is, the set of P € X (k)
such that vp(D) # 0. If f is a rational function on X and D is a divisor with support disjoint from Div f
we define

fmy= [ rey=®.

PeX (k)

The classical Weil reciprocity theorem states the following:
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Theorem 2.2 (Weil Reciprocity — see, e.g.,[I Section 2 of Appendix B]). Let X/k be a smooth proper
curve over an algebraically closed field. If f and g are two rational functions on X such that SuppDiv fN
SuppDivg = 0, then

f(Divg) = g(Divf).

Remark. There exists a more general version of Weil reciprocity written with local symbols that holds
without the hypothesis of disjoint support — see [22] Proposition IIL.7].

2.3. Group schemes

2.3.1. Group schemes. Our principal references for group schemes are the books of Demazure
and Gabriel [6] and Oort [19]. For abelian schemes we refer to Milne [17] and Mumford et al. [18].

Definition 2.3. A sheaf of (abelian) groups over a scheme S is an fppf sheaf on Sch/S with values in
(abelian) groups. A group scheme over S is a representable sheaf of groups over S. A group scheme is
called commutative if it is a sheaf of abelian groups. An action of a sheaf of groups G on a fppf sheaf S
is a morphism G x § — S that is a group action on T—points for every T — S.

By Yoneda and the fact that a representable functor is an fppf sheaf (see, e.g., [24, Theorem 2.55]),
an equivalent definition of a group scheme over S is as a scheme X/S with morphisms m : X x X — X
and e : S — X such that for any T' € Sch/S, X(T) is a group with multiplication induced by m and
identity element er.

Again by Yoneda, (commutative) group schemes over S form a full sub-category of the category of
sheaves of (abelian) groups over S. The category of commutative group schemes over S is not abelian,
however, the category of sheaves of abelian groups over S is. Thus, when working with commutative
group schemes we will always consider them as embedded inside the category of sheaves of abelian groups,
even when we are only interested in commutative group schemes. In particular, by an exact sequence
of commutative group schemes we mean a sequence of commutative group schemes that is exact in the
category of sheaves of abelian groups.

Definition 2.4. Let S be a scheme. An abelian scheme X/S is a smooth and proper group scheme over
S with connected geometric fibers.

An abelian scheme is commutative (see [I8, Section 6.1, Corollary 6.5] for the Noetherian case and
[7, Remark 1.1.2] for the general case).

Definition 2.5. Let S be a scheme. A torus X/S is a group scheme which that is fppf-locally over
S isomorphic to a finite product of copies of G,,. A semiabelian scheme G/S of an abelian variety A
by a torus Ty (i.e. there is an exact sequence is a smooth separated commutative group scheme with
geometrically connected fibers such that each fiber Gy is an extension 0 — Ts — Gy — Ay — 0 in the

fppf topology).
We will say more about extensions of group schemes in the next section.

2.3.2. Torsors. Our principal references for torsors are Demazure and Gabriel [6, Section II1.4],
Milne [16], Section III.4], and the Stacks Project [23]. Note that in the definition below we use the fppf
topology, differing from the Stacks Project where torsors are defined as locally trivial in fpgc. Because
we will be working almost exclusively with G,,—torsors this choice will not make a difference, however
working over fppf allows us to make accurate citations to theorems stated for more general group schemes
in Demazure and Gabriel who also work with the fppf topology.

Definition 2.6 (cf. [23] Definitions 0498 and 049A] ). Let G be a group scheme over S and X a scheme
over S. A G--torsor over X is an fppf sheaf S on Sch/X with an action of G such that there is an fppf
covering (U; — X)) and for each 4, Sy, with its G action is isomorphic (as a sheaf with G—action) to G
with the G—action of left multiplication.

The following is a standard result:

Proposition 2.7 (see, e.g., [6l Proposition 111.4.1.9]). Let G be an affine group scheme over S and X a
scheme over S . If P is a G—torsor over X, then P is representable by a scheme that is affine over X.
If G/S is flat, so is P/X.

There is a natural way to associate to any G-torsor a class in the Cech cohomology group H'(X topfs G)-
If we denote by PHS(X,G) the set of isomorphism classes of G torsors, then this gives a bijection
PHS(X,G) + HY(Xpps,G) [16, Corollary TI1.4.7] (the name PHS is an abbreviation for principal
homogenous spaces, which is another name for torsors).
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When G is commutative, the group structure on (X f,, s, G) induces a group structure on PHS(X, G),
which can be described as follows ([16, Remark I11.4.8b]): if Y7 and Y, are two G—torsors then their
sum Y7 V Y5 is the G—torsor obtained by taking the product Y7 X x Yo and quotienting by the action
of G given by (g, (y1,y2)) — (9y1,9 y2). The action of G on Y; V Y5 is that defined by the action

(9, (y1,92)) = (9y1,y2) = (y1, gy2) on the corresponding presheaf.
Of particular interest for us are G,,—torsors. By Hilbert’s Theorem 90 [23, Theorem tag 03P8|,

H! (Xtpps, Grm) = H! (Xet, Gyp) & Hl(er, Gyn). In particular, any G,,—torsor can be trivialized locally
in the Zariski topology, and PHS (X, G,,) = Pic(X). This isomorphism maps the class of a torsor to the
class of the invertible sheaf defined by the same cocycle.

If we have an exact sequence of group schemes over S (exact in the fppf-topology)

0-G,, Y —>X—=0

then Y has a natural structure as a G,,—torsor over X: indeed, surjectivity of the arrow Y — X implies
that there exists an fppf cover X'/X such that id : X’ — X’ lifts to a map X' — Yx =Y xx X’ and
thus the exact sequence of group schemes over X’

0-G,, Yy - X =0
splits and Yx: = X’ x G,,,. We call an exact sequence of commmutative group schemes over S
0—-G,—-Y—>X—>0
an extension of X by G,, s and we say that two extensions
0—-G,, - Y —=>X—=0

and

0-5G,, =Y =X =0

are isomorphic if there is an isomorphism Y — Y” (over S) making the following diagram commute

N

Y/
We denote by Ext(X, G,,) the set of isomorphism classes of extensions of X by G,,. The map sending an
extension to the class of the torsor it defines is an injection from Ext(X, G,,) to Pic(X). The Barsotti—

Weil theorem, which we will state in the next section as Theorem [2.20] after introducing the relative
Picard functor, refines this statement.

2.4. The relative Picard functor

In this section we recall some facts about the relative Picard functor. Our primary references are
Bosch et al. [4, Chapters 8 and 9] and Kleiman [14]. Note that the definitions of the functor Picy /g
given in these two sources are not equivalent — we adopt the definition of Bosch et al. [4, Definition
8.1.2]:

Definition 2.8. Let X/S be a scheme. We define the relative Picard functor of X over S:
Picx/s : Schemes/S — Ab
to be the fppf-sheafification of the functor
T — Pic(X xT)
If S = SpecA for A a ring we will often write Picx,4 for Picx/s.

Under certain conditions, the relative Picard functor admits a particularly amenable description:
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Proposition 2.9 (see, e.g., [I4, Theorem 9.2.5] or [4, Proposition 8.1.4]). Let X be an S—scheme with
structural morphism f such that f.(Ox) = Og holds universally (i.e. under any change of base S’ — S)
and admitting a section S — X. Then the relative Picard functor Picx,s is given by

T — Pic(X x T)/Pic(T)

where Pic(T') is mapped to Pic(X x T) by pullback via the projection map X x T — T. Furthermore
Picx,g is an fpqc sheaf on Sch/S.

Remark. The description of Picx,s in the conclusion of is taken as the definition of Picx /g in [14],
and then different names are attached to its sheafifications in various topologies.

Definition 2.10. Let X/S be a scheme. Given a section € : S — X and an invertible sheaf £ on X xg T,
a rigidification of L along e is an isomorphism a: O — €L where er = € X idy. We define the rigidified
Picard functor along e:
P(X,e): Sch/S — Ab

by

P(X,e)(T) = {(L£, ) | £L an invertible sheaf on X7, « a rigidifcation along e}/ ~
Where ~ means up to isomorphism, where two pairs (£, «) and (£’,’) are isomorphic if there is an
isomorphism £ — £’ carrying « to o’.

Proposition 2.11 (see, e.g., [14, Lemma 9.2.9]). If X/S admits a section €, the map P(X,€)(T) —
Pic(X x T)/Pic(T), (L,a) — L is an isomorphism.

Remark. If f,(Ox) = Og holds universally then a rigidified line bundle (£, &) on X1 does not admit any
non-trivial automorphisms (see, e.g., [14, Lemma 9.2.10]), and this can be used together with Proposition
to show that P(X,e€) is an fpqc sheaf in order to prove Proposition

We will need some results on the representability of Picx,g by a scheme. If Picy g is representable
we will say the Picard scheme of X/S exists and denote such a representing scheme by Picx/s. We first
discuss some properties of such a representing scheme, if it exists.

Suppose that Picx /g is described on T points as Picy,s(T) = Pic(X7)/Pic(T) (as is the case, for
example, if the hypotheses of Proposition are satisfied) and is representable by a scheme Picy,g.
Then, for a fixed section ¢, Picx /g also represents P(X,¢), and corresponding to the identity element
in Hom(Picx,g,Picx/g) there is a unique (up to unique isomorphism) “universal” line bundle &/ on
X x Picx/g rigidified along € x idpjc,, ¢ such that for any T" and any line bundle £ on X x T rigidified
over € X idr, there exists a unique morphism ¢ : T — Picx,s such that £ is uniquely isomorphic to
(idx x ¢)*(U).

We make a tautological observation about the behavior of Picx,g under base change.

Proposition 2.12. Let X be a scheme over S, f: S’ — S a morphism, and let X' = Xg:. Then
the map mx*: Picx,g xs S’ —Picx/ g is an isomorphism of functors on Sch/S'. Furthermore, if
Picx /s 1s represented by a scheme Picx, s with universal line bundle U then Picx/ s is represented by
Picx/ /s = Picx/gx 55" with universal bundle U’ = (mx x7p)*U (wherenx: X'xgPicx/ g — X' — X
and mp: X' xg Picx /g — Picx/ s — Picx,g are the projection morphisms). If U is rigidified along
€: S — X then U’ is rigidified along the canonical extension ¢’ : S" — X',

PROOF. For a scheme T/S’ consider the commutative diagram with cartesian squares

X! TX
TXS/X/HX/HX.

N

T S’ S
There is a natural S—isomorphism T xg: X’ — T xg X given by the map idr X mx, and pullback of

bundles by this map induces an isomorphism of the functors Picx,g x5 5" — Picx: /g
To see the statement about the universal bundles, let £ € Picx//s/(T). Considering it as an element

L of Picx/s(T) we see there is a unique morphism ¢ : T — Picx,g such that (¢ x idx)*U = L. This

induces a unique morphism ¢’ : T' — Picx/ /g such that (7p o ¢’ x idx )*U = L. Then, pulling back by
idr X Tx, we see
(rpod xmx)'U=L
and thus
((Z)/ X ’L'dX/>*(7Tp X Wx)*u = (¢/ X idX/)*Z/{’.
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We now state some results on the existence of the Picard scheme.

Theorem 2.13 ([4, Theorem 8.2.1)). Let f : X — S be projective, flat, and finitely presented, with
reduced and irreducible geometric fibers. Then the Picard scheme Picx /s erists and is a separated S—
scheme, locally of finite presentation.

We note that Picx,s has a natural group law and thus if it is representable by a scheme then it is
equipped with a natural structure as a group scheme. In the case where the base is a field we can relax
the conditions of Theorem 2. 13

Theorem 2.14 ([4, Theorem 8.2.3]). Let X be a proper scheme over a field k. The Picard scheme
Picy, exists and is locally of finite type over k.

When it exists, Picy/;, is a group scheme and we can consider its identity component Pic& Jk (i.e.
the maximal connected subgroup scheme).

Theorem 2.15 ([4, Theorem 8.4.3]). Let X/k be a smooth, proper, and geometrically integral scheme.
Then the identity component Picg(/k s a proper scheme over k.

Over a general base S, we define Pic% /s for X /S proper to be the subfunctor of Picx /g consisting
of all elements whose restriction to each fiber X,, s € S belongs to Picg(s Jk(s)- 1 Kk is an algebraically
closed field then, for a smooth proper curve X/k, Pic% /i (k) consists of line bundles of degree 0; for an
abelian variety A/k, Pic% sk (k) consists of translation invariant line bundles.

We are primarily interested in the functor Picg( /s in two cases: when X is a relative curve and when
X is an abelian scheme.

In the case of relative curves the theory of Pick /s 1s better known as the theory of relative Jacobians.
In the case of a smooth proper connected curve X/k, Picgc /K 18 an abelian variety which we call the
Jacobian variety JacX. In the case of proper curve with a single ordinary double point, Picg( k18
represented by a G,,—extension of the Jacobian of its normalization, one of the generalized Jacobians of
Rosenlicht; we will explore and generalize this result in Section [3.3]

We will need some of the following theorems on the representability of Pic% /s

Theorem 2.16 ([4, Theorem 9.4.1]). Let X — S be a semistable relative curve. Then Picg(/s 18
represented by a smooth separated S—scheme.

In the case that it exists for a relative curve, we will sometimes call the scheme representing Pic /S
the relative Jacobian J of X/S.
We will need a result on the structure of Jacobians over fields.

Theorem 2.17 ([4, Proposition 9.2.3]). Let X be a smooth proper geometrically connected curve over a
field k. Then the Jacobian J (i.e. Picg(/k) of X/k exists and is an abelian variety.

Theorem 2.18 ([4 Proposition 9.4.4]). Let X — S be a smooth relative curve. Then Picg(/s 18 an
abelian S—scheme.

Theorem 2.19 ([7, Theorem I1.1.9]). Let A/S be an abelian scheme. Then Pic%/s is represented by an
abelian scheme AV /S called the dual abelian scheme.

We conclude this section with the Barsotti—Weil theorem, which ties together our discussion of torsors
and extensions and our discussion of the relative Picard functor. We motivate this with the following
(see [I7, Proposition 1.9.2]): if A/k is an abelian variety and £ is an invertible sheaf whose class is in
Pic’(A/k) then,

m*L = p*L®q" L.
where m: A x A — A is the multiplication map and p; and p, are the two projections A x A — A. An
identity sectin can be chosen such that this gives a group structure on the associated G,,,—torsor Y — A
making Y an extension of A by G,,. Over a more general base, the following theorem shows that the
only obstruction to this group structure existing is that £ must also be rigidified in order to provide an
identity section.

Theorem 2.20 (Barsotti-Weil). Let S be a scheme and let A/S be an abelian scheme with dual AY.
The map Ext(A, G,,) — P°(A,eq) = Pic’(A)/Pic(S) = AY(S) given by considering an extension as a
G, —torsor is an isomorphism of groups.
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Remark. It is difficult to find a reference for Barsotti-Weil where S is allowed to be an arbitrary
scheme. One proof is contained in Oort [19] IT1.18.1], that, as indicated in a footnote in Jossen’s thesis
13 Theorem 1.2.2 and footnote], extends to the general case once more recent existence results for the
dual abelian scheme are taken into account. For more details on these existence results, see e.g. Faltings
and Chai [7, pages 2-5]. Also in Faltings and Chai [7], page 9] one can find a single sentence asserting
that the extensions of an abelian scheme A by a torus T are classified by Hom(X(T), AY) where X (T) is
the character group of T, which is a more general statement that reduces to the version of Barsotti—Weil
above when T' = G,,.

2.5. Jacobian varieties
In this section we recall some results from the theory of Jacobians over algebraically closed fields.

2.5.1. The Rosati Involution. Let k be an algebraically closed field, X/k a smooth proper curve,
and J/k its Jacobian variety, which, by Theorem is an abelian variety. For any closed point Py € X
there exists a unique map fp,: X — J sending a k—point P to the divisor class of (P) — (P). By
pullback of invertible sheaves we obtain a map fz :.J V' — J, and a classic result says that this map is
independent of the base point Py and is an isomorphism J¥ — J (see, e.g., [17, Lemma II1.6.9]). We will
denote the inverse of —f5; by A (or Ax if there is ambiguity as to the curve we are working with) so that
—fF, 1s equal to A~ for any Py. We will sometimes refer to A as the canonical principal polarization.

Using A we define an involution on End(.J),

Yl = A7V
where
Yo JY = JY
is the dual map to v given by pullback of invertible sheaves by . This is called the Rosati involution
and T is called the Rosati dual of ©». The Rosati involution is linear, reverses the order of composition,
and for any 1 € End(J), ¢t = 1 (see, e.g., [I7, Section 1.14]). We will call ¥ symmetric if ¢! = 1

and antisymmetric if ¥ = —. For any ¢ we will denote by ¥ = 1 — o' its antisymmetrization.
antisymmetric endomorphisms will play an important role in Chapter [4

2.5.2. The Weil Pairing. We now define the Weil pairing, following Milne [17), Section I.13] where
more details can be found. Fix k an algebraically closed field. For any abelian variety over k and any
n coprime to the characteristic of k, there is a natural pairing e, : A[n] x AY[n] — p, (where here we
mean the sets of n torsion in the k—points) defined as follows: if y € AV[n] is represented by a divisor
D, then n*y D (where n4 is multiplication by n on A) is the divisor of a function g on A, and we define
en(z,y) = g/(g o 7,) where 7, is translation by x (one shows this to be a constant value contained in
tn). The Weil pairing is skew-symmetric and non-degenerate (in the sense that if e, (z,y) = 1 for all
y € AV[n] then x is the identity of A).

On the Jacobian J of a smooth proper connected curve X/k, we obtain the Weil-pairing on J[n] x J[n]|
from the Weil pairing on J[n] x J[n] by composition in the right component with the canonical principal
polarization A, and by abuse of notation we will continue to write this as e, : J[n] x J[n] = p,.

Lemma 2.21. If ¢ € End(J) then e,(z,v'(y)) = en(¥(z),y).

PROOF. Let y € Jn]. Then A(¢f(y)) = ¥*A(y) is represented by 1* D’ where D’ represents A(y).
Then n*y*D’ = (Y on)*D’ = (noy)*D’ = ¢Y*n*D’, so if g is a function with Divg = n*D’ then
Divg o ¢ = n*p*D’. Then for x € J[n], we see

en(a, 9 (y)) =go/godor,
=9/9° Ty(z)
=€n(¢($)7 y)
the equality on the second line following from the fact that these functions are constant. O

In other words, } is an adjoint operator for e,.

Finally, we note that one can also give a description of the Weil pairing on J[n] x J[n] in terms of
divisors on X. Namely, if = [D,] and y = [D,] where D, and D, are divisors on X with disjoint
support, and if nD, = Divf, and nD, = Divf, then
f(Dy)
fy(Dz)

6"($, y) =
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For a proof of this fact, see Theorem 1 and the remarks afterwards in [12].

2.5.3. Endomorphisms of the Jacobian. Let C and C’ be smooth proper curves over an alge-
braically closed field k& with Jacobians J and J’, respectively.

Definition 2.22. A divisorial correspondence on C x C' is an element of
Corr(C x C") := Pic(C x C")/(pEPic(C) - per Pic(C'))

There is a natural bijection between divisorial correspondences on C' x C’ (that is, invertible sheaves
C x C' considered up to equivalence by pullbacks of invertible sheaves on C and C”) and the group
Hom(JJ, J').

To any invertible sheaf £ on C' x C’ we associate the morphism @, that sends a degree 0 divisor on

k
E n; P;
i=1

C

to the bundle on C’
(P X id)* L™ @ -+ @ (P, X id)*L™*
which is of degree 0 by virtue of the fact that the degree of these pullbacks onto C’ is constant.

Proposition 2.23. The map L — O, from Corr(C x C') to Hom(J, J') is a bijection.
PrROOF. For details, see e.g. [17, Corollary IIL.6.3]. O

Proposition 2.24. Let k be an algebraically closed field and let C/k and C’'/k be smooth projective
curves with Jacobian J and J' respectively. Any morphism v : J — J' can be written as a sum

Y= Z ai*'ﬁ
7

where o; and v; are non constant morphisms of smooth proper curves Y; — C' and Y; — C, respectively.
Furthermore if C = C' then given any such representation, we have the representation

o= vy
i
and thus the antisymmetrization of 1 can be represented as

=19 =Pt =) (@] —yi-a])
PRrROOF. Consider the divisorial correspondence given by the sheaf O(D) associated to the divisor
D = A where A is an irreducible curve in C' x C’ not equal to a fiber of the form {P} xC”" or C x {P'}. If

Y ——> A is the normalization of A and « is the composition 7¢rom: Y — C’ and 7 is the composition
mcom: Y — C then the map J — J’ defined by D is given on divisors by a,v*. Note that a and ~ are
both non-constant morphisms of smooth proper curves.

We note that any correspondence can be given by a sheaf O(D) where D is an effective divisor whose
support does not contain any fibers of the form {P} x C’ or C x {P’} for P € C or P’ € C' closed points.
Indeed, it suffices to show that any correspondence can be given by D effective since removing the fibers
of this form do not change the class of the correspondence. To see that any correspondence can be given
by an effective divisor, observe that for any P € C, P’ € C’ the sheaf O({P} x C' + {P'} x (") is ample
(as the tensor product of the pullback of ample sheaves on C' and C’ — see, e.g., [10, Exercise I1.5.12]),
and thus we can tensor a sheaf £ with a sufficient power of O({P} x C + {P'} x C') to obtain a sheaf
giving the same correspondence as £ and admitting a non-zero global section, which gives the desired
effective divisor D.

Now, given any morphism : J — J', we can describe it as the morphism associated to the corre-
spondence O(Dy) for some effective divisor Dy = Y n;A; on C x C’ as above. Then 1 can be described
on divisors as the map

Z nioéi*ﬁ

where v;: Y; — C and «;: Y; — O’ are non-constant morphisms of smooth proper curves associated to
A; as before.

Consider now a single curve C' with Jacobian J and the ring End(J). We can describe the action
of the Rosati dual in terms of correspondences. Indeed, since an endomorphism is given by a divisorial
correspondence on C x C| it is clear that we can obtain a duality on End(J) by swapping the roles of the
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two copies of C. This is, in fact, the same as the Rosati dual (cf. Birkenhake and Lange [3, Proposition
11.5.3] for a proof over C). In particular, if ¢): J — J is an endomorphism that can be written in the form
a,v* where a and 7 are both maps Y — C for Y another smooth proper curve over k, then ¢’ = ~,a*.
This proves the final statement of the proposition. O

Remark. The key point here is that we can produce a lift of ¥ to a morphism that is defined already
at the level of divisors and such that the Rosati dual can be lifted in a compatible way.



CHAPTER 3

Pinching, line bundles, and G,,—extensions

In this chapter we use pinching to describe some families of G,,—extensions of the Jacobian of a
smooth proper curve over an algebraically closed field.

3.1. Amalgamated sums and pinching

In this section we recall some results of Ferrand [8] on amalgamated sums and pinchings of closed
schemes, and then develop some complements on pinchings of flat families.

In addition to Ferrand [8], other useful references include Schwede [2I] and Demazure and Gabriel
[6], 111.2.3].

3.1.1. Definitions and basic results. Suppose

|

X
is a diagram of morphisms of ringed spaces. The amalgamated sum of this diagram is the ringed space
(X UzY,0xuy2)

described as follows: X Uz Y is the almagamated sum of X and Y as topological spaces over Z, formed
by taking the disjoint union X LY and quotienting by the equivalence relation generated by the relations
fr(z) ~ fx(z) for all z € Z (we remark that the definition stated by Ferrand in [8] Scolie 4.3.a.i] is
incorrect because it claims that these are the only relations, however, this does not seem to pose any
problems in his other results). There are natural maps of sets gx: X - X Uz Y and gy: Y — X Uz Y
and the topology on X Uz Y is the quotient topology — that is, a set U in X Uz Y is open if and only
if both g)_(l(U) and g;l(U) are open (i.e. it is the strongest topology such that gx and gy are both
continuous). Denote by fxi,v: Z — X Uz Y the map gx o fx = gy o fy. The structure sheaf Ox,,vy
and maps gﬁ and gﬁ are defined for an open set U C X Uz Y as the fibered product making the following
diagram of rings cartesian,

Oxiy 2(U) ——> Oy (g5 (U))

lgﬁ lff

1%

Ox (g5 (U)) —== 0z(fx!,v(U))

i.e. Oxuy 7z is the sheaf fibered product ¢x.Ox X fxu,v0z 9. Oy . Equivalently,

Oxuy 2(U) = {(2,9) € gx:0x(U)) x gy Oy (U) | fE(z) = ff ()}

The amalgamated sum is a fibered co-product (or push-out) in the category of ringed spaces: one can
check that it satisfies the universal property that for any commutative diagram of ringed spaces

fy

J —

Ix

N<—X

X —

11
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there exists a unique morphism X Uz Y — T making the following diagram commute

Iy

J —

.

X—EXuy 2z

We also say that the commutative diagram

is co-cartesian in the category of ringed spaces.

Suppose now that X, Y, and Z are locally ringed spaces and the morphisms are of locally ringed
spaces. If the amalgamated sum X LIz Y is also a locally ringed space, then it is a fibered co-product in
the category of locally ringed spaces (one verifies that if morphisms X — T and Y — T are local then
the induced morphism X Uz Y — T must also be local). In fact, this is always the case, as the following
theorem shows.

Theorem 3.1. Let fx: Z — X and fy: Z — Y be morphisms of locally ringed spaces and let W =
XUzY be the amalgamated sum in the category of ringed spaces making the following diagram co-cartesian

-y

\fo lgy
9x

X ——
Then W is locally ringed and the morphisms gx and gy are morphisms of locally ringed spaces.
PROOF. The proof depends on the following lemma.
Lemma 3.2. Let (a,b) € Ow (W) = Ox (X)X 0,2 Oy (Y) and letw € W. The following are equivalent:

(1) There exists x € gy (w) such that a, is invertible in Ox . or there exists y € gy ' (w) such that
by is invertible in Oy,y,.
(2) For all z € g'(w), a, is invertible in Ox , and for all y € gy (w), ay is invertible in Oy,

PROOF. (of lemma). The direction (2) = (1) is trivial after noting that at least one of the sets
gx' (w) and gy'(w) is nonempty, and so we prove (1) = (2).

We claim that for any z € Z, ay, (. is invertible in Ox (. if and only if bf, (. is invertible in
Oy, fy(z)- Indeed, if ay, (. is invertible then fﬁ (a), is invertible in Oz .. But fﬁ(a) = f# (b) and since
the morphism f# is local, fff (b). invertible implies by, () is invertible. The other direction follows by
symmetry. Now, since the equivalence relation giving W from X LY is generated by the relations of the
form fx(z) ~ fy(2) for z € Z, we see that if x € g3'(w) and y € gy' (w) then  and y are connected by
a finite chain of such relations and thus a, is invertible if and only if b, is invertible, and similarly for
and 2’ both in g3'(w) and y and y’ both in g;-*(w). The result follows. O

We now prove the theorem. Let wy € W. We want to show that the ring O, is local. So, let [
be the ideal consisting of all elements of O, that can be represented by (U, a,b) for U C W open and
(a,b) € Ow (U) such that for all z € g*(wo), a, € m, and for all y € gy (wp), b, € m,. We will show
this ideal is maximal by showing anything outside of I is invertible. So, let (U, a,b) ¢ I. Then, applying
the lemma (note that U is the amalgamated sum of its preimages so we can apply the lemma to it), we
see that for all x € g;(l (wo), ag is invertible and for all y € g;l(wo), b, is invertible. Let

V ={weU|Vr € gy'(w), a; € m, and Yy € gy (w), b, € m,}

Then by the above wg € V, and we claim that V is open. Indeed, suppose = € f;l(V). Then
a; € m,, and thus there is an open neighborhood N, C f5'(U) of x such that a, is invertible for all
2’ € N,. But then by the lemma, fx(z') € V, and we see N, C f5'(V) and thus f5'(V) is open. A
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symmetric argument shows fy 1(V) is also open, and thus by definition V is an open subset of W. It
remains to see that (a,b)|y is invertible. But indeed, a|f§1(v) is invertible and b|f;1(\/) is invertible (by
definition of V' they are both everywhere locally invertible), and thus we obtain an inverse for (U, a,b)
in O, represented by (V, (a|f§1(v))_1, (b|f;1(v))_1). This shows Ow .y, is local with maximal ideal I.
That the morphisms fx and fy are local morphisms follows immediately from the definition of I. O

Furthermore, if X, Y, and Z are schemes and the amalgamated sum X Ll Y is also a scheme then
X Uz Y is a fibered co-product in the category of schemes. However, the amalgamated sum of schemes
in the category of ringed spaces is not necessarily a scheme, as the following example shows.

Example 3.3. Let k be a field and let U be A}\{0}. If j is the inclusion U — A} and f is the structure
morphism U — Speck then we obtain an amalgamated sum

U N Speck

o
A} —— A} Uy Speck

This amalgamated sum as a topological space is a two point set with one closed point which is not open
(the image of 0) and one open point which is not closed (the image of U). The stalk at either point is
equal to k, and the global sections are also equal to k. In particular, it cannot be a scheme since the
only open containing the closed point is the entire space but since A,lg Uy Speck has two points, it is not
equal to Speck, and thus the closed point is not contained in an open affine.

If a fibered co-product exists in a category, then the universal property implies that it is unique up
to unique isomorphism. Thus if we restrict ourselves to schemes and the amalgamated sum X Uz Y is
also a scheme then it is the unique co-product in the category of schemes. However, if X Lz Y is not a
scheme then it is still possible for there to be a fibered co-product in the category of schemes, but it will
not be equal to X Uz Y and thus will not be a fibered co-product in the category of ringed spaces, as
the following example illustrates.

Example 3.4. Taking up again the notations of Example [3.3] we note that the commutative diagram

U —L°L Speck

T

A} N Speck

is co-cartesian in the category of schemes over k. Indeed, suppose we have a morphism from Aj to a
scheme T'/k whose restriction to U factors through Speck. The image of Speck in T is a closed point with
residue field k, and since the inverse image of a closed set in A} must be closed and the inverse image
of this closed point already contains U, it must be all of A}. Thus the map factors through a closed
subscheme of T with a single point and residue field k. But since A} is reduced this closed subscheme is
Speck, as desired.

In fact, when the amalgamated sum of schemes is a scheme, then it is a fibered co-product in the
category of schemes that satisfies a particularly nice property: namely, if U is an open subset of X Uz Y
then (U, Oxy,y|v) is, by construction, the amalgamated sum of fy'(U) and f;'(U) over f;bZY(U),
and thus if X Lz Y is a scheme it gives a co-product such that each open subset is the co-product of its
inverse images.

We are particularly interested in the amalgamated sum (in the category of ringed spaces) of schemes
in the case of a diagram

z—1s gz

)l;

where ¢ : Z — X is a closed immersion and ¢ : Z — Z’ is affine and dominant. In this case, if
X' = Xz 7' is a scheme and the induced morphism Z’ — X' is a closed immersion, we will call X’ the
pinching of X along Z by ¢ and we will say that we can pinch X along Z by q or that the pinching of
X along Z by q exists.
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Remark 3.5. The terminology “pinching” is taken from [8], however, the definition given in [8] does not
require the morphism ¢ : Z — Z’ to be dominant. Not only is this at odds with the geometric intuition
of what a pinching should be, but it is also less convenient to work with because it confuses the roles of X
and Z’ in the construction — we do not want new points (or any more than necessary) to be appearing
from Z’, which we view as a scheme that the closed subscheme Z of X is pinched down to, but if ¢ is
not dominant then X Uz Z’ has a non-empty open set outside of the image of X coming from Z’ — ¢(Z).
Furthermore, we do not lose any generality by requiring g to be dominant — if ¢ is not dominant then
we can replace X with X U Z', Z with Z U Z’, and g with ¢ U id to obtain the same ringed space now
with a dominant morphism.

We will make extensive use of the following theorem taken from a combination of results of Ferrand
[8] on the existence and properties of pinchings.

Theorem 3.6 (Ferrand [8, Théorémes 5.6 and 7.1]). Let ¢ : Z — X be a closed immersion of schemes
and let q : Z — 7' be a finite surjective morphism of schemes such that for every point 2’ € Z', the
set ¢~ 1(2') is contained in an open affine of X. The pinching X' of X along Z by q exists. Denote by
m: X = X" and ! : Z' — X' the natural maps so that we have a commutative diagram

Z$Z!

lb \LL/
X —Z- X!
The morphism (' is a closed immersion, and 7 is finite surjective and induces an isomorphism X — 7 —
X' — Z'. The commutative diagram above is both cartesian and co-cartesian.
Furthermore, if Z, Z', and X are schemes over S and q and v are morphisms over S then X' has

a unique structure of a scheme over S making m and ' morphisms over S. If X/S is separated (resp.
proper) then X'/S is separated (resp. proper).

PrOOF. Except for the final remark, this statement is derived directly from Ferrand [8, Théorémes
5.6 and 7.1]. The universal property of the fibered co-product gives the desired morphism X’ — S. If
Z — 7' is surjective, then X — X’ is surjective. If X/S is separated then since X xg X — X' xg X' is
proper (it is the product of two proper maps) and since Z — Z’ surjective implies X — X’ is surjective,
we see that the diagonal is a closed set and thus X’ is separated. If X — S is proper then since for any
base extension T' — S the map X/ — X is both finite and surjective, and since X1 — T is proper and
thus a closed map we conclude that X/} — T is as well and thus X’ — S is universally closed and X’ is
proper (since we have already shown it to be separated). O

Example 3.7. Here are some examples of different types of pinchings:

(1) Glueing two schemes along a closed subscheme. If 72> x and Z—sYy are closed
immersions then we can glue together X and Y along Z. This corresponds to the pinching

U7 iduid 7

|

Xuy —X’

(2) A nodal cubic. We obtain a nodal cubic by glueing two distinct points in the affine line over a
field k. To make the calculation work out nicely we take chark # 2. In this case we can take the
pinching X’ of X along Z over g where X = Speck|x], Z = Speck[z]/I with I = (x+1)(z — 1),
7' = Speck, v: Z — X is the natural closed immersion, and ¢ : Z — Z' is the structure
morphism, which collapses the two points x = —1 and x = 1 to a single point. Then, as in
the description of the affine case following this example, X’ is the spectrum of the subring A
of k[z] of f such that f(—1) = f(1), and the map k[u,v] — A sending u to (z + 1)(z — 1) and
v to z(z + 1)(z — 1) is a surjection with kernel v? = u® — u?, and thus X’ is the nodal cubic
defined by this equation.

(3) A cuspidal cubic. We obtain a cuspidal cubic by pinching a point with nilpotents in the affine
line over a field. Explicitly, take the pinching X’ of X along Z over ¢ where X = Speck][z],
Z = Speck[z]/I with I = (2?), Z' = Speck, t: Z — X is the natural closed immersion and
q: Z — Z' is the structure morphism. Then X’ is the spectrum of the subring of A of k[x]
consisting of f such that f/(0) = 0 and the map k[u,v] — A sending u to 2% and v to 22 is an
isomorphism with kernel v? = u3, and thus X’ is the cuspidal cubic defined by this equation.
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The cubics of examples 2 and 3 will resurface again in Example where we discuss pinchings in flat
families and their relative Picard functors.

We conclude this section with a more detailed discussion of the amalgamated sum in the affine case.
Suppose that

SpecB —— SpecB’

L

SpecA — SpecA’

is co-cartesian in the category of ringed spaces. Then it is co-cartesian in the category of affine schemes,
and thus we obtain that in the opposite category

A——A

L

B —=B

is a cartesian diagram. Conversely, suppose we are given such a cartesian diagram of rings and fur-
thermore that A — B is surjective (i.e. SpecB — SpecA is a closed immersion). Then by Ferrand [8],
Théoréme 5.1] (which is used to prove the more general case stated above as Theorem , the corre-
sponding diagram of spectra is co-cartesian in the category of locally ringed spaces. Furthermore, in
Lemme 1.3 and the subsequent discussion of [8] it is shown that a commutative diagram of rings

=y

L

B ——B

with A — B surjective is cartesian if and only if A’ — B’ is surjective with kernel I and f induces a
bijection between I and ker A — B. Intuitively, we obtain such a diagram by taking a quotient B of A
and letting A’ be the pre-image in A of a sub-ring B’ of B (at least when B’ — B is injective). Putting
this together we see

Theorem 3.8 (Ferrand [8, Lemme 1.3, Théoréme 5.1]). Let

SpecB —~= SpecB’

T

SpecA —"= SpecA’

be a commutative diagram of affine schemes with v a closed immersion. It is co-cartesian in the category
of ringed spaces if and only if | is a closed immersion and ™ induces a bijection between ker(A’ — B)
and ker(A — B).

3.1.2. Amalgamated sums in flat families. In general the amalgamated sum does not commute
with base change, as the following example shows:

Example 3.9. Let k be a field and let A = k[e] (¢2 = 0). Consider the diagram of rings

Ale']Jee <— A

:L’»—)OT

Ale'] <—— Afz]/(2?, zc)
€ €
Where €’ is another nilpotent with €2 = 0. By Theorem the corresponding diagram of affine schemes
is co-cartesian in the category of locally ringed spaces. Consider now the map A — k given by € — 0.
Tensoring with this map, we obtain the diagram
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kle'] <= klal/ (22)

z—0

and since the corresponding diagram of schemes has closed immersions for the vertical maps but the
bottom arrow does not induce a bijection between their kernels, we see by Theorem that it is not a
co-product in the category of affine schemes.

We will show now, however, that if the schemes involved are flat over a base then amalgamated sums
are preserved by base extension.

Lemma 3.10. Let
SpecB —~= SpecB’

SpecA —== SpecA’

be a commutative diagram of morphisms of schemes over SpecR with ¢ a closed immersion. Suppose
furthermore that the diagram is co-cartesian in the category of ringed spaces. If A, B, and B’ are flat
over R then:
(1) A’ is flat over R
(2) For any morphism of rings R — R, the diagram obtained through base extension by Specl:l 18
co-cartesian in the category of ringed spaces.

PROOF. Let

Uy

Pl
B—sn
be the corresponding commutative diagram of morphisms of R—algebras.

By Theorem p’ is also surjective and f induces an isomorphism of R-modules between kerp’ and
kerp. By a standard result, if 0 — M; — My — M3 — 0 is an exact sequence of R—modules, then all
three are flat as soon as either My and Mj are flat or M7 and M3 are flat. One application of this shows
that since A and B are flat, ker p is also flat. Since ker p and ker p’ are isomorphic, and since B’ is also
flat, another application shows that A’ is flat.

The diagram obtained by change of base can be written

. f -
AQ@R—ARR -

iﬁ’ lﬁ
BoR—=BoR

The vertical arrows remain surjective and, by flatness of B’ and B, kerp = kerp ® R and kerj/ =
kerp’ ® R. Since f was an isomorphism kerp — kerp’, f is an isomorphism between these kernels.
Thus, by Theorem the diagram obtained by base extension is co-cartesian in the category of ringed
spaces. U

Theorem 3.11. Let
7—=z
Pk
X —=X'
be a commutative diagram of schemes over S with ¢ and ' closed immersions and both q and 7 affine.

Suppose furthermore that the diagram is co-cartesian in the category of ringed spaces. If Z, Z', and X
are flat over S then:

(1) X' is flat over S
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(2) For any T — S, the diagram obtained by base extension

ZTHZ,_IF

|

Xr—— Xé«
18 co-cartesian in the category of ringed spaces.

PROOF. We recall that an open subscheme of X/ is the fibered co-product (in the category of ringed
spaces) of its inverse images in X7 and ZJ over its inverse image in Zp. Using this, we can show the
universal property of a fibered co-product holds. Indeed, to construct a morphism out of X/ we can
construct it on an appropriate affine cover using Lemma and the fact that g, ¢, m, and ¢/ are all
affine, and an application of the universal property shows that these will glue. Flatness of X’ also follows
directly from Lemma [3.10} U

3.2. Pinching and locally free sheaves

In this section we develop the theory of locally free sheaves of finite rank on pinchings. Our ultimate
goal is to use these results to describe the relative Picard functor of pinchings in flat families, however,
it is natural to work in the more general setting of locally free sheaves of finite rank.

The main result of this section is Theorem which describes the category of locally free sheaves
of finite rank on pinchings as a fiber product of the categories of locally free sheaves of finite rank on the
schemes involved in the pinching. Ferrand [8] Section 2] gives a similar description of modules over fiber
products of rings, also noting that analogous statements hold for quasi-coherent modules over appropriate
pinchings, although he leaves it to the reader to make and verify such statements [8, Section 7.4]. Our
approach is inspired from that of Ferrand, however, because it is not too difficult we give a full proof in
the case of locally free sheaves of finite rank without citing any of Ferrand’s results on quasi-coherent
modules. Our proof has the advantage that parts of it take place over arbitrary locally ringed spaces,
and it is in a certain sense more geometric, whereas Ferrand’s proof, couched already in the language
of rings, is forcibly algebraic in nature. In Section we reformulate Ferrand’s result on modules
over fiber products of rings in the case of quasi-coherent modules on schemes, which recovers a stronger
version of Theorem [3.13] as well as similar results for flat quasi-coherent modules.

Although we develop the theory in a much more general setting, the motivating example to keep in
mind is that of line bundles on curves, where we would like line bundles on the pinching of a curve to be
given by pinchings of line bundles on the original curve (in some sense to be made precise later).

Definition 3.12. Let Cy, C1, and Cs be categories and let F;, 1 < i < 2 be a functor from C; to Cy. We
denote by C; x¢, C2 the fiber product of the categories C; and Cy over Cy with respect to the functors
F;, defined as follows: The objects of C; x¢, Ca are triplets (A1, A2, o) where A; is an object of C; and
o: F1(A1) — F3(A2) is an isomorphism in Cy. The morphisms in C; x¢, C2 from one triplet (A4;, Az, 0)
to another triplet (A}, A5, 0’) are the pairs (f1, fo) where f; : A; — A} are morphisms in C; such that
o' o F(f1) = F(f2)oo0.

For a ringed space X, let Dx denote the category of Ox—modules, let D%ﬁ, denote the category of

locally free of finite rank Oy, —modules, and let ’D%,fv’” denote the category of locally free Oy —modules of
rank n. If we have morphisms of ringed spaces

fy

7 —=Y
ifx
X

then we can form the fiber product category Dx xp, Dy over the functors fy-: Dy — Dz and f%: Dx —
Dz. Restating the definition above in this special case, an object of Dx xp, Dy is a triplet (Lx, Ly, o)
where Lx is an object of Dx, Ly is an object of Dy, and o is an isomorphism fyLx — fyLy. A
morphism from (Lx, Ly, o) to (L, L% ,0’) is a pair of morphisms (ax,ay), ax: Lx = L%, ay: Ly —
LY such that o’ o (frax) = (fyay)oo.
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Let Z, X, and Y be ringed spaces and fx : Z — X and fy : Z — Y morphisms. Let T = X Uz Y
be the amalgamated sum making the following diagram co-cartesian in the category of ringed spaces

N
X7
Denote by & the standard isomorphism of functors £: f g% — fy ¢35 obtained by adjunction and the
identity of functors fx.gx. = fr« = fy«gv+. Using & we define the functor F': Dy — Dx xp, Dy by
Lt = (9xLr, 95 LT, )-
We also define a functor G: Dx xp, Dy — Dx- that under certain circumstances will serve as an

inverse to F' (as shown below in Theorem the main result of this section). We define G as follows:

Given (Lx,Ly,0) an object of Dx Xp, Dy, let B def fr«fy Ly . From the identity of functors

fre = gxefxs = gy« [y«

we obtain a natural map ay : gy«Ly — B which is the pushforward by gy of the map Ly — fy.fy Ly
obtained by adjunction from id: fy Ly — fyLy. Similarly we obtain a map ax : gx«Lx — B which
is the pushforward by gx of the map Lx — fx.fy Ly obtained by adjunction from the isomorphism
o: fxLx — fyLy. Finally,

G(Lx,Ly,0) © o Lx x5 gysLy.

We note that G(Ox,Oy,c) is equal, by definition, to Or where ¢ is the canonical isomorphism
fxOx — Oz — f£Oy, and thus we obtain for any (Lx,Ly,0) an action of Or on G(Lx,Ly,0),
making it an Opr—module. The following is the main result of this section:

Theorem 3.13. Let X, Z, and Z' be schemes, let 1: Z — X be a closed immersion and let q: Z — Z'
be a finite surjective morphism such that for any 2’ € Z', ¢71(2') is contained in an open affine of X.
Let m: X — X' be the pinching of X in Z by q and \/: Z' — X' the associated closed immersion

Z$Z!

lb \LL/
X —=X
The functors F and G defined above are mutually quasi-inverse equivalences of categories between DY,

If 1f 1f,n 1f,n. If,n L
and D X pir Dy, and between Dy," and Dy X plt.n D,." for any positive integer n.

Before proving Theorem we will develop some preliminary results relating the functors F' and
G in a more general setting.

Lemma 3.14. If
Z Y

fy
—
f& lgy
T

g9x
X ——

is a co-cartesian diagram of locally ringed spaces then the functor G: Dx Xp, Dy — Dr is the right
adjoint of F: Dr — Dx xp, Dy.

ProOF. (Oflemma). Suppose we have a morphism ¢ € Hom(L',G(Lx, Ly,o)). Since G(Lx, Ly, o)
is a cartesian product, this is equivalent to a commutative diagram

L —gy«Ly

.

gx-Lx —=—>B

By adjunction, to give morphisms £’ — gy.Ly and £’ — gx.«Lx is the same as to give a pair of
morphisms g3 £ — Ly and g5 L' — Lx. Thus it remains only to verify that the original morphisms
after composition to B agree if and only if the diagram obtained by pullback of these morphisms by f%
and fy
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e s

L

fxLx —— fy Ly
commutes. But this diagram commutes if and only if the composed morphism f% g% L' — fxLlx — fv Ly
gives the same map £ — B by adjunction (applied first to fx then to gx) as the map £’ — B given by
adjunction from fy g3 L — fy Ly (adjunction applied first to fy then to gy). From the definitions of
B, ax, and ay, this occurs if and only if the original diagram was commutative, as desired. O

We observe that both G and F' commute with restriction in the following sense: if U is an open
subset of T' then U with the restricted structure sheaf is the amalgamated sum of its inverse images with
their restricted structure sheaves. This defines functors from sheaves over T to sheaves over U and from
sheaves on X,Y, and Z to sheaves on the inverse images of X, Y, and Z, and the latter extend to a
functor from the fibered product of categories on the full space to the fiber product of categories on the
inverse images of U. By abuse of notation we denote all of these restriction functors by |;. Then there
are natural isomorphisms F o |y 2 |y o F and G o |y & |y o G where on one side F and G are defined
for sheaves over T" and on the other for sheaves over U. Furthermore, these isomorphisms preserve the
adjunction in the natural sense.

Lemma 3.15. If

f&lgy

is a co-cartesian diagram of locally ringed spaces then the morphism of adjunction id — GF is an
isomorphism of functors D — DY.

PrROOF. We claim first that F(Or) = (¢%Or, 95 Or, €0, ) is isomorphic to the triplet (Ox, Oy, c)
where c is the canonical isomorphism f3Ox — Oz — f3Oy. Indeed, there are canonical isomorphisms
cx 1 gxOr = Ox and ¢y : g5 Or — Oy, and we claim the diagram

* sk o * ok
Ix9xOr — Iy 9y Or

lf;*wx if\?w

fxOx —— fyOy

commutes. This diagram commutes if and only if the diagram

* sk o * ok
Ix9xOr — Iy 9y Or

lf;*wx if\?w

fxOx fy Oy
Oy id Oy

commutes where the bottom vertical arrows are the canonical isomorphisms. This commutes if and only
if the two adjoint morphisms Or — fr.Oz corresponding to the two columns are the same. But both
of these adjoints are the arrow f# :Or — fr«Og.

Now, by definition Or = G(Ox, Oy, c), and after the isomorphism above, the corresponding mor-
phism Op — Or is the identity. Indeed, it is the morphism corresponding by adjunction to the map
(9% O0r, 950y, 0,) — (Ox, Oy, c), which is by definition the morphism Or — Or corresponding by the
universal property of the fiber product to the two projection morphisms Or — gx.Ox and Or — gy Oy,
which is the identity. Thus, the adjunction morphism O — GF(Or) is an isomorphism.

Similarly, the adjunction morphism O} — GF(O}) is an isomorphism and thus the adjunction
morphism is an isomorphism on free sheaves of finite rank. For the general case of a locally free sheaf £
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on O, we observe that the adjunction morphism commutes with restriction to an open subset of T' as
described immediately before the statement of the lemma, and the result follows. O

Lemma 3.16. If

lf& \LQY
is a co-cartesian diagram of locally ringed spaces then the adjoint morphism FG(Ox, Oy, c) = (Ox,Oy,¢)

is an isomorphism (where ¢ is the canonical isomorphism fxOx — f+-Oy ).

PROOF. We remark that G(Ox, Oy, c¢) = Or and the map FG(Ox,Oy,c) = (Ox,Oy,c) is given
by the maps adjoint to Or — ¢gx.Ox and Or — gy.Oy. These are the canonical isomorphisms
9xOr = Ox and g5 Or — Oy, and thus the map is an isomorphism. ([

We are now ready to prove Theorem [3.13]

PROOF. (Of Theorem [3.13). We need to show that F and G are mutually inverse equivalences of
categories on locally free sheaves. On the one hand, it is clear that F' maps Dl)f(, to Dl)f( X pit Dg/, and
we have established that the adjunction gives an isomorphism of functors GF' — id when restricted to
locally free sheaves. To do so we first showed that it preserved free objects and then were able to conclude
the result because we could always restrict locally to open subsets of the amalgamated sum X’ where
the object was free.

In Lemma [3.16] we established that FG is equivalent to the identity on free objects. Thus, in order
to apply the same argument as before with GF to show that F'G is equivalent to the identity on locally
free objects, by the compatibility of F' and G with restriction it suffices to show that for any object
(Lx,Lz,0) of DI X pis DY, and any 2’ € X' that there exist an open V' C X’ containing 2’ such that

(Lxlgzroy Lzlg 1) o)
is isomorphic to

(O?(|g;(1(v)7 oy |g;,1(v)7 c).
where here c is the nth tensor power of the canonical isomorphism. Note that this will also show that
G maps Dl)f( X it Dg, to Dl)f(,, and thus show that G and F' are mutually quasi-inverse equivalences of
categories.

We remark that since 7 is an isomorphism from X — Z to X’ — Z’, it remains only to consider
neighborhoods of points 2’ € Z'. We are given that for any 2’ € Z’, all of the preimages z1, ..., 2;, of 2’
in Z are contained in an open affine of X. Furthermore, at each of these pre-images £x must be locally
free of rank n equal to the rank of £z at 2’ since t*Lx = ¢q* L. The following lemma shows then that
there exists an open U C X containing z1, ..., 2y, such that Lx|y = Ox|}.

Lemma 3.17. Let X = SpecA be an affine scheme and let p1, ..., py be prime ideals of A. Then for any
locally free sheaf L = M on X that is free of rank n in neighborhoods of each of the p;, there exists an
open U C SpecA containing p1, ..., px such that L]y = OF.

PRrROOF. (Of lemma) It suffices to prove the assertion when the p; are disjoint maximal ideals, since
in the general case we can replace each p; with a maximal ideal containing it and throw out any duplicates
(note that if it is rank n at p; it is rank n at any maximal ideal containing p;). By the Chinese remainder
theorem, A — [[*_, A/p; and tensoring with M we see M — [[F_, M/p;M. Since each M/p;M is an
n dimensional vector space over A/p;, we can take mq,...,m, € M whose image in each M/p;M is a
basis. We claim that these m; form a basis for £ in a neigborhood of each p;. Indeed, we can pick
some affine neighborhood SpecB of p; where L is free of rank n and take a basis there [y, ...,l,,. Then
there is a matrix D € M, «,(B) such that D maps (1, ...,1,) to (m1,...,m,) and its determinant must
be invertible in a neighborhood of p; since both 1, ...,1, and mq, .., m, reduce to bases of M /p;M, and
thus in that neighborhood my, ..., m,, is a basis. Taking U to be the union of such neighborhoods over all
p; we obtain an isomorphism OF 5L|y via (21, ..., Zy) — Y. ;M. O

Now, for such a U, U’ = X' — n(X\U) is an open subset of X’ containing ¢/(z’) (open because m
is finite and thus a closed map) such that Lx |-+ = (’)X\ﬁ,l(U,). Since ¢/ is a closed immersion, by
replacing U’ with a smaller open set we also obtain that Lz, -1y = Oz |7,,1(U,), and furthermore we
can also take U’ to be affine. Replacing X, Z’, and Z by the respective preimages of U’, we reduce to the
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case where Lx = O%, Lz = O%,, and all of the schemes involved are affine (recall that an open subset
of the amalgamated sum in the category of ringed spaces is the amalgamated sum of its preimages). We
now claim that in this case there is a neighborhood of 2’ and an automorphism of 0% that sends o to
c. Indeed, o can be identified with an automorphism of 0%, and thus it suffices to see that this comes
locally from an automorphism of O%. Since Z — X is a closed immersion of affine schemes and o is
given by a matrix in Mat, «,(I'(Oz)), there exists a matrix o’ in Mat, x,(I'(Ox)) mapping to o. The
matrix o’ is not necessarily an automorphism of O%, but if we restrict to the open subset V' = D(det o’)
which contains Z (since o is invertible), then it is, and on V' we obtain the desired isomorphism between

(Lxlgzrwvy Lzlg1 vy 0)
and
(07)1<|g;(1(v)a Oz |g;,1(v)7 c).
g

3.2.1. Quasi-coherent sheaves. Ferrand [8, Section 2] developed the theory of modules on fiber
products of rings by defining functors S and 7" which, for affine schemes under the equivalence of categories
between quasi-coherent sheaves and modules, correspond to our G and F (respectively). His Théoréme
2.2 describes certain properties of these functors and, in certain cases, gives an equivalence of categories
between modules on the fiber product of two rings and the fiber product of the categories of modules
on the component rings. Ferrand [8] Section 7.4] also mentions that similar statements hold for quasi-
coherent modules over schemes, however, he has chosen to “laisser au lecteur le soin d’énoncer et vérifier”
such statements. We do so now.

For any scheme W we denote by D}y the category of quasi-coherent Oy —modules.

7 oy
|

X 9y
be a commutative diagram of morphisms of schemes, co-cartesian in the category of ringed spaces. If the

maps fx and gy are closed immersions and the maps gx and fy are affine, then

Proposition 3.18. Let

(1) G and F induce functors between DY xps DY’ and D} and the morphism of adjunction
FG — id is an isomorphism of functors (when restricted to these categories).

(2) A quasi-coherent sheaf L on T is 0 if and only if F(L) is 0.

(3) The morphism of adjunction L — GF (L) is surjective for any quasi-coherent sheaf L on T,
and an isomorphism if L is also flat.

(4) The functor G maps pairs of locally finitely generated modules in DY X pae DY to locally finitely
generated modules in D . Furthermore, if Cq (for O one of X, Y, Z orT') denotes the category
of flat quasi-coherent modules (resp. flat locally finitely generated, resp. locally free of finite
rank) then G and F are quasi-inverse equivalences of categories between Cx X¢, Cy and Cr.

PROOF. In fact, F' always maps a quasi-coherent sheaf to a pair of quasi-coherent sheaves because

they are formed by pullback. Consider now a triplet (Lx, Ly,o) where Lx and Ly are quasi-coherent

and let L def G(Lx,Ly,0). Since the morphisms gy, gx, and fr are all affine, the pushforwards gy . Ly,

9x+Lx, and fr.fy Ly = B are all quasi-coherent, and thus the fiber product L7 = gy+Ly X gx«Lx is
as well.

The remaining claims follow from the corresponding claims of Ferrand [8, Théoréme 2.2 | after
observing that F' and G commute with restriction and are identified with Ferrand’s functors “I” and
“S” by the equivalence of categories between quasi-coherent sheaves and modules. In order to obtain the
result for modules that are locally free of finite rank, one must observe that this is equivalent to locally
projective finitely generated (or flat locally of finite presentation). We make one further note: number
(3) is stated differently here than in [8, Théoreme 2.2 | — in particular, our statement that the map is
an isomorphism when £ is flat is not contained in Ferrand’s statement, however, it is apparent in the
proof where the kernel of the map is identified with the image of a Tor functor that vanishes when the
module is flat, and it is also used implicitly in the proof of his statement corresponding to (4). O

Remark. The locally free of finite rank case of proposition (4) gives a more general version of
Theorem [B.13
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3.2.2. Pinching and the Picard group. We now place ourselves in the situation of Theorem [3.13
and use this equivalence to examine Pic(X’) and the map 7* from Pic(X’) to Pic(X). The equivalence of
categories gives an isomorphism of groups between Pic(X’) and the set of isomorphism classes of triplets
(Lx,Lz,0) (where the latter is a group under the natural multiplication (Lx, Lz, 0) - (L, L), 0") —
(Lx QLY Lz @ LY, 0®0")), and the map 7* maps a triplet (Lx, Lz, 0) to the isomorphism class of
Lx. Thus, the class of an invertible sheaf £x is contained in the image of 7* if and only if the class of
t*Lx is in the image of ¢*(viewed as a map from Pic(Z’) — Pic(Z)). Furthermore, the fiber of 7* over
the class of an invertible sheaf £x can be identified with the set of isomorphism classes of pairs (Lz, o)
where Lz is an invertible sheaf on Z’ and o is an isomorphism o : t*Lx — ¢*Lz/, modulo the actions
of Ox(X)* and Oz (Z')* (the automorphisms of Lx and Lz/).

3.2.3. Pinching in flat families and the relative Picard functor. We now want to put our-
selves in a situation where we can apply the above description of the Picard group given by the equivalence
of categories of Theorem in order to describe the relative Picard functor of a pinching. So, let X, Z,
and Z' be schemes over S satisfying the hypotheses of Theorem with the added condition that the
morphisms be morphisms over S. Applying Theorem let m: X — X’ be the pinching of X along Z by
gand let /' : Z' — X' be the corresponding closed immersion, and note that X’ is equipped with a canon-
ical structure morphism X’ — S such that 7= and ¢/ are both morphisms over S. We want to describe
the relative Picard functor Picx/,g by describing its T-points. Thus, we also require that X, Z, and 2’
be flat over S so that, by Theorem X'’ is also flat and a base extension of X’ is the pinching of the
corresponding base extensions of X, Z, and Z’. This allows us to describe Pic(X’ xgT'), which will give
us a nice description of Picx/,g(T’) if we are in the situation where Picx,,g(T) = Pic(X' x g T')/Pic(T).
We now introduce some further conditions to put ourselves in this situation. Suppose fx.Ox = Og
(where fx is the structure morphism) holds universally and X/S admits a section. Proposition
implies that Picx,g(T") = Pic(X x5 T')/Pic(T’), and by composition X’/S also admits a section so that
if we can show that also fx/.Ox' = Og holds universally then again from Proposition 2.9 we will obtain
the desired description of Picx//s.

Lemma 3.19. If q is also flat then fx«.Ox = Og holds universally.

PROOF. Since q : Z — Z' is faithfully flat (¢ was already assumed surjective) we see that Oz —
q+Oz is injective. By definition of the structure sheaf on Ox: and since Oz — ¢.Oz is injective, we
obtain that Ox, — m,Ox is injective. The morphism Og — fx.Ox factors as

Os = fxOxr = (fx om).Ox = fx.Ox

and since the second arrow is injective and the composition is the identity we see that fx/.Ox: = Og.
Furthermore, since ¢ will remain faithfully flat under base extension over S, the same argument holds
under any base extension and thus fx/.Ox = Og holds universally. O

Theorem 3.20. In the situation of Theorem if X, Z, and Z' are flat over S, q: Z — Z' is flat,
both q and ¢ are morphisms over S, fx.Ox = Og holds universally (where fx : X — S is the structure
morphism), and X/S admits a section, then

Picx/s(T') = Pic(Xr)/Pic(T)
and
Picy:/s(T) =Pic(X7)/Pic(T)
={(Lxr.Lz5,0) |0 W Lxp=q" Ly} ~
where Lx,. is an invertible sheaf of Xr, Lz, is an invertible sheaf on Zh, and o is an isomorphism.

The relation ~ is equivalence by isomorphism of triplets and by the subgroup of elements of the form
(f)*(T[,,fg%L‘,O') where L is an invertible sheaf on T and o is the canonical isomorphism *fx L —

qafr L.
Jgurthermore, under this description the map ©* sends the class of a triplet (Lx.., EZ/T,U) to the class
of Lx, and
ker 7*(T) = {(L, o) | L an invertible line bundle on Z and o: Oz, q*L}] ~

where ~ is the relation (L,0) ~ (L', ") if there exists an isomorphism L — L' sending o to o’. Under
this description the embedding ker m* — Picx/ /g is given by (L,0) — (Ox,,L,0 0 c) where ¢ is the
canonical isomorphism c: 1*Ox,—=Oz,..
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PRrROOF. Following the discussion at the start of this section, the hypotheses and Lemma [3.19]imply
that Picy:,g(T) = Pic(X' x5 T')/Pic(T) and similarly for Picx,s. Combining this with Theorem
we obtain the desired description. Since X7 = X’ xg T is, by Theorem the pinching of X7 in Zp
by qr: Zr — ZI, the map 7* is the map 7*: Pic(X}) — Pic(Xr) taken to the quotient by Pic(T). To
obtain the description of the kernel, we observe that since Xp and X7 both admit sections, the pullback
maps Pic(T) — Pic(Xr) and Pic(T) — Pic(X7) are injective, and thus the kernel of 7* can now be
identified with isomorphism classes of pairs (Lz/,0) with o : Oz, — ¢*Lz an isomorphism, since by
hypothesis Ox,.(X7)* is Or(T)* and thus this action is already included in the isomorphisms of Lz,. O

Example 3.21. Glueing of two flat families along a section. In Example 3.7, we saw how to glue
together two sub-schemes along a closed sub-scheme. We can do the same in the relative case by glueing
along any flat closed subscheme. In particular, we can glue along sections. So, let X and Y be flat and

separated over S and let S e X and S Y Y be two sections. Let W be the pinching of the
diagram

Sl—lsiduid S .

o |

Xuy —Ww

If fx+Ox = Ox and fy.Oy = Oy hold universally then it is clear that fi/,Ow = Og holds universally
and since W also admits a section, by Proposition we obtain Picy/s(T) = Pic(Wr)/Pic(T). In
this case Pic(Wr) is given by isomorphism classes of pairs (Lx,, Ly, ) such that e Lxr = €y, Ly,
(we can forget about the specific isomorphism because our conditions guarantee these always come from
automorphisms in X LY. In fact, the map Picy s — Picy,g x Picy,g defined on T points by sending
(Lxp,Lyr) to {Lx;} x {Ly;} is an isomorphism: any element of Picy,g(T) xs Picy,s(T) can be
represented by bundles with trivial pullback to S and thus it is surjective, and any pair (Lx,,Ly;)
mapping to the identity maps to Pic(7) in both components and thus since ey Lx, = €y, Ly, it is
contained in the pullback of Pic(T') to Pic(Wr). Note that in this example we are not in the situation
of Theorem [3:20] because fxiy«Oxuy = Os x Og.

3.2.4. Pinching sections of relative curves. Let X be a smooth projective curve over an alge-
braically closed field k& and suppose we have two disjoint closed points P,Q € X. Then we can pinch
the points P and @ together to obtain a new curve X’ as in Theorem Concretely, this gives the
following diagram of schemes, co-cartesian in the category of ringed spaces:

Speck LI Speck — Speck

Pqu l

X4”>X/

and following Serre [22], Chapter 4, Proposition 4.1.2], we see that X’ is a singular curve over k with one

singular point, a node at the image of P and @, and the map X — =Y is the normalization of X’ (cf.
also Examples 2 and 3). More generally, we can perform a similar construction by pinching more
than two points together or pinching together multiple groups of points. If X is a relative curve over S
then we can also pinch disjoint sections over S, which in light of the compatibility of pinching and base
change in flat families (Theorem can be viewed as a family of pinchings parameterized by S. The
rest of this section is dedicated to describing the behavior of the relative Picard functor in this situation.

Remark. Line bundles on pinchings of curves were first studied by Rosenlicht, who developed the theory
of generalized Jacobians that is presented by Serre in [22]. Deligne [5], Section 10.3] has also developed
the theory of 1-motives attached to singular and quasi-projective curves and studied their Picard groups
in this context. We do not know of another work besides the present one that develops the theory
explicitly in the relative case.

If X/S is a relative curve and P; ;, 1 < i <n and 0 < j <m,; are pairwise non-intersecting sections
P;;: S — X of X/S, then by the pinching of X/S in {P; ;} we mean the pinching obtained by for each
1 < iy < n collapsing all of the sections {P;, ;} to a single section which we will call P;,. This is the
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pinching X’ corresponding to the diagram

Lli(LljSij) L> L;S;

Cl

X%X/

where S;; and S; are indexed copies of S, the morphism ¢ maps S;; by P;; to X, the morphism ¢ maps
each S;; to S; by the identity, and the morphisms 7 and ¢’ are the induced maps so that, in particular, ¢/
maps S; to X’ by the new section P; obtained by collapsing all of the P;; with the same ¢. This pinching
exists by Theorem

Applying our results on pinching to this situation we obtain the following:

Theorem 3.22. Let S be a scheme and let X/S be a smooth projective curve. Let {P; ;} 1 <i<n and
0 < j < m; be pairwise non-intersecting sections of X. The pinching m: X — X' in the {P; ;} exists and
18 stable under base extension. In particular, the geometric fibers of X' are proper curves with exactly n
singularities and normalization ws: Xs — X.. Furthermore, Picg(/s s an abelian scheme, Picg(,/s s a
commutative group scheme, and there is an exvact sequence of Zariski sheaves

where G is a split torus over S of rank N =>_ m,.

Remark. We consider only disjoint sections because in general if the sections are not disjoint then in
Theorem the kernel will not be a torus — cf. Example

PRroOF. The first two parts of the statement follow from Theorems and after noting that
by projectivity any finite number of points lying in a single fiber X, are contained in an open affine of
X.

We observe that projectivity gives us that fx.Ox = Og holds universally, and thus we can apply
Theorem The kernel of 7* : Picx/,s — Picx,g is, on T—points, given by isomorphism classes of
pairs (£,0) where £ is a line bundle on L;7; and o is an isomorphism ¢*£ — Oy, 1, ;. The existence
of such a o implies £ is isomorphic to Oy, , and so the kernel of 7* is given by pairs (Oy,1;,0),
o:q"Ou,1, — Ou, ;1,; up to automorphism of O, 7,. Let ¢ be the canonical such isomorphism — then
any other isomorphism can be written as u-c where u € I'(Oy, ;1, ;)*. In this way we obtain a canonical
surjective morphism fzi,.jsi,j Gm =GN+ = I0; ;G — ker v* (where fi, s, ; is the structure morphism
W; ;Si; — S). A point t = (t; ;) € GIT™(T) is in the kernel of this map if and only if for each i and each
pair j and j', t; ; = t; j» (so that it comes from an automorphism of Oy,7,). Thus, the kernel of this map
is a torus of rank n and we see that ker 7* is a split torus of rank N. We must also show that ker 7* is
contained in Picg(, /s- But at every geometric point § of S, ker 7* is also a torus, which is connected and

contains the identity, and thus is contained in the identity component of Picg(é /s» and thus by definition
ker m* C Picg(,/s.

We now observe that 7 : Picx//g — Picx/g is surjective in the Zariski topology. Indeed, if £ is a
bundle on X7, then for a fixed ¢ € T' and for each ¢ and j there is an open neighborhood of ¢ in T; ;
where P;;(L£) is trivial. If U is the intersection of these neighborhoods over all i and j we find ¢*(£)
is trivial on U. Since ¢*(Oy,1,) is also trivial on U, there is an isomorphism o : .*(£) — ¢*(Our, ;) on
U, and thus we see there is a line bundle on X{; (coming from this isomorphism) whose pullback to X
is £. Tt remains to see that this surjection is preserved on the Pic’. But indeed, at a geometric point
the map is a surjective map of group schemes with connected kernel, and so is surjective between the
identity components. Thus if £’ on X7 maps to something in Pic%,(7T") then it must be in Picg(,/S(T).

Thus, we have shown that the sequence is exact. By Theorem [2.18 Pic% /s 1s an abelian scheme, and

since the sequence is exact Picoi g is a torsor for a split torus over Picg( /s- In particular, since a split

torus is affine, by Proposition (a standard result), Picg(, /s 1s representable and thus a commutative
group scheme. O

Remark. In the proof of Theorem we could also have shown that the exact sequence of Picard
functors restricts correctly to the identity components by considering degrees as in [4] Section 9.1].

Remark. Theorem generalizes [4, Example 9.2.8].
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Continuing with the notation of Theorem we now describe an explicit splitting for the torus
G = ker * which we will use frequently in the rest of this work. We define a morphism ¢x/ : GN —
Picg(,/s that on T—points sends a point (t;,;) 1 < ¢ < n, 1 < j < m,; (notice we have omitted the
index 0 for j) to the triple (Ox,,Ou,1,,0), where o|r, ; acts by t;; times the canonical morphism
c:j5"Ox,; — Oy, 1, ; — ¢"Ou,r,. Tt follows from our description of G in the proof of that this is
an isomorphism onto G. By fixing this map we obtain a GY-extension of Picg( /8

0—> GY —2¢ Pic}, g —> Pick /s — >0

There is a natural product morphism prod : GY — G,, and pushing out along this morphism we
obtain a G,,—extension E fitting in the following commutative diagram with exact rows:

(3.2.1) 0—>GN — 2% Pic}, s —~> Pick /s —> 0
lprod l l
0 G — > F—" > Pick s —> 0

In the rest of this work, this extension is the extension we refer to when we say the G,,—extension of
Pic% /s associated to X' or to the pinching of X in (£ ;). In the next section we determine the associated
extension in terms of divisors and the auto-duality of the Jacobian when S is an algebraically closed field.

Example 3.23. Intersecting sections. One might ask why we work only with non-intersecting sections.
Indeed, the glueing theorems of the previous section can still be applied, however, if the sections are not
disjoint then generally the extensions obtained will not be semiabelian: Consider, for example, P} x A} as
a family of projective lines parameterized by Aj. with coordinate x, and consider a copy of A? C Pi x A}
inside by taking an A} C P} with coordinate y. We will pinch the familiy P} x Aj in the two crossing
diagonal lines defined by (z —y) and (x 4 y) in A? by identifying points with the same z-coordinate.
This is the pinching corresponding to the diagram

Speck[r, y]/(z + ) (x — y) —> AL = Speck[r]

| |

P} x A} X'

Its fiber over the point = 0 in k[z] is given by the pinching diagram

Speck[y]/(y?) — Speck .

| l

Pl X

We claim that Picg% Jk 18 the group scheme G,. Indeed, Pic[%i k= Speck, so that for any T'/k there is
only a single element in Pic]%}c (T), and thus everying in Picg(é k(1) is in the kernel of the pullback map
T Picxé/k(T) — Pic]p]lc (T'). Conversely, the kernel of the map map 7* : Picx, » — Picxy s, is given by
fiber over Op: which can be identified with Go(T) = I'(T). Indeed, by Theorem this fiber is given
by invertible elements of T'(T)[y]/y? mod invertible elements of I'(T'), and since the invertible elements of
[(T)[y]/y* are the elements a + by with a invertible, the map G4(T) — Picx; /x(T) given by b — 1+ by
is an isomorphism onto ker 7*. In particular, since ker 7* = G, is connected and Picg(é /i C kerm™ we

see that ker 7* = Picg% /k- Thus, even though in this family outside of the fiber at 0 we obtain Gy, at 0
we obtain an additive group G,.

We note that there is another way to understand this example. The family of curves obtained in
this pinching is easily seen to be a family of nodal cubics degenerating to a cuspidal cubic at x = 0:
restricting to the AZ where all of the pinching occurs, X’ becomes the spectrum of the sub-k[x]-algebra
of k[z,y] generated by (x + y)(xz — y) and y(x + y)(z — y) which is isomorphic as a k[z]-algebra to
K[z, v,w]/(w? = —v® + 22v?) by v — (z +y)(x — y) and w — y(x + y)(z — y) (cf. also Examples 2
and 3). It is a standard result that the Pic® of a projective nodal cubic is G,, and of a projective
cuspidal cubic is G,.
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3.3. Pinching and G,,—extensions of Jacobians over fields

Let k be an algebraically closed field and let C'/k be a smooth proper curve of genus g > 1. Let
J = PicOC /1 be its Jacobian variety. Let A be the canonical principal polarization J — J vV as described
in Section

By the Barsotti-Weil theorem (stated earlier as Theorem , G,,—extensions of J are in one to
one correspondence with k—points of JY by associating to any G,,—extension the line bundle with the
same cocycle, and thus by composition with A~! we get an isomorphism Ext(J, G,,) — J(k). If we
then identify a line bundle on C' with the divisor class that gives rise to the same cocycle (under the
identification that sends a divisor defined on an open cover {U;} by rational functions f; to the cocycle
defined on the open cover U; by fi/f; on U;; = U; NU;), then we get an isomorphism from the group of
G,,—extensions of J to the divisor class group of C. We now calculate the image under this map of the
G,,—extension associated to a pinching in terms of divisor classes under this isomorphism.

Theorem 3.24. Let m: C' — C’ be the pinching associated to a disjoint set of points {P; ;} 1 <1i < n,

0 < j < my on a smooth curve C over an algebraically closed field k. The image of the associated
G, —extension (cf. under the isomorphism Ext(J, G,,) — J(k) described above is the divisor class

of

i=1 j=1

PROOF. Let J' be the relative Jacobian of C’. The associated G,,—extension can be placed in the
bottom row of the commutative diagram

5

bor s

0 GN J' J 0
\L prod l i id
b "
0 Gm E J 0

We will calculate the image of the extension under A~! by giving sections of the associated torsor E over
a cover by two open sets and calculating the corresponding cocycle. We let U; be the set C\{P; ;}. To
find the other set, we first let f;; for each 1 <i <mn, 1 <j < m; be a function whose divisor is

Djj = Pij — Py + D

where D;; is a divisor with support disjoint from {P; ;} (such functions exist by either a simple argument
involving Riemann-Roch or by working in a suitable open affine), and let f;; = 1 when j = 0. We then
let Us be the set C'\ U Suppf)ij.

Fix a point Py € C. For notational simplicity, we will calculate the image of the extension under
—X~! instead of A™!'. The map —A~! is the pullback [#,, and the morphism fp, : C' — J is given by
the line bundle LA_cx{p,} on C x C where A is the diagonal. Thus, a section of f7 J’ over an open set
U C C, which is a point of J/'(U) that is mapped by 7* to fp,|v, is a line bundle on U x C’ whose pull
back to U x C'is Lao_cx{p,}- Since U x C” is the pinching of U x C in the {U x P; ;}, we can construct
such a section by using our description of line bundles in pinchings:

Denote by P; the image of P; ; in C’. The pullback of LA _cx(p,} to Z1 = U; Uy x P j is canonically
isomorphic to Oz, since A — C x {Py} and U; ;U7 x P, ; are disjoint. Thus we obtain a section sy over
Uy with the bundle on U; x C” given by the triple (La_cx{p,}|U,xCs 021701) where Z] = LU;U; X P;
and o7 is the canonical isomorphism.

The pullback of LA_cxip,} to Z2 = U; jUs X P; ; is canonically isomorphic to Lp where D is the

divisor
D=3 Pijx Py,
,J
Let D' be the divisor L; ;P; o X P; on Zj = U;U; x P;. The pull back of £Lp- is canonically isomorphic
to L7 where

D = ZPOJ' X Pi,j~
4,3

If we let f be the function on Z, equal to f; ; on Uy x P; j then D’ = D + f and thus multiplication by
1/f is an isomorphism from Lp — L. So we obtain a section sy over Uy with the bundle on Uy x C’
given by the triple (La_cx{p,}|vs, £LDr,02) wWhere o9 is composition of multiplication by 1/f with the
canonical isomorphisms.
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On the intersection Uy N Us, the section sy is 1/f times the section s; (where 1/f is interepreted
as the action of the image of 1/f in GY). Thus the composed sections to E differ on U; N Uy by the
action of the image of 1/f in G,,, which is II; ;1/fi;. So, ({U1, Uz}, IL; 1/ fijlu,,) provides a cocycle for
I5,E. Since A=~ /B, the image of the extension under the map we consider is given by the cocycle
({U1, U2}, 11,5 fijluy, ), which corresponds to the Cartier divisor given on Uy by 1 and by Us by IL;; fij,
which is equivalent to the Weil divisor

S5 R -
i=1 j=1
as desired. O

3.3.1. The universal extension over CY9. We now interpret this in light of the “universal” ex-
tension: let A be an abelian variety over an algebraically closed field and AV its dual. By Barsotti-Weil
(Theorem [2.20]), the map id : AY — AY corresponds to a universal G,,—extension F of A4v

0 G FE Ayv 0

which is defined by the property that the fiber over a point x € AY (k) is the G,,—extension of A defined
by z. In the case of the Jacobian J of a smooth curve C/k, if A : J — JV is the canonical polarization
then this is the extension

0 Gm E Jy 0

whose fiber over a point p € J is the extension defined by A(p).

In practice this extension is difficult to work with. Instead, let us consider the product of curves C9
where g is the genus of C'. If we fix a set 1, ..., Q4 of g disjoint closed points of C' we obtain a canonical
morphism ¢(q,,...q,): C? — J sending a closed point (P, ..., Py) to the divisor class of >, (P;) — (Q).
Again by Barsotti—Weil this defines an extension

0 G, FE Jog 0

whose fiber over a closed point p = (P, ..., P;) € CY is the extension defined by A} (P;) — (Q;)), and
so we can view this as a sort of “de-symmetrization” of the universal extension. One advantage of using
this extension with base CY instead of the universal extension with base J is that we can construct it
over an open subset of CY9 as the extension associated to a pinching.

Let U be the open subset of CY given by U = C9\W where W is the closed set consisting of the union
of the inverse image of the diagonal in C' x C' under each projection C9 — C x C' and the inverse image of
{Qi} C C under each projections C9 — C'; that is U is CY9 minus points with repeated coordinates and
points with a coordinate equal to @;. On U we have 2g disjoint sections p;,q; of U x C, where p; sends
a point (P, ..., Py) to (P, ..., Py) x (P;) and ¢; sends a point (P, ..., By) to (P, ..., Py) X (Q;). Pinching
these sections in pairs (p;, ¢;) as in Theorem we obtain the associated extension (cf.

0 G, 4 Ju 0

that, over a closed point u = (P, ..., Py) € U(k), corresponds by Theorem to A>_,;(P) — (Qi)), and
thus we see that this is the extension E over CY restricted to U.




CHAPTER 4

Higher genus counterexamples to relative Manin—Mumford

In the appendix of an article of Bertrand [2], Edixhoven gives a geometric construction of a counterex-
ample to Pink’s relative Manin—Mumford conjecture (see Section for the statement of this conjecture)
using pinching on an elliptic curve with complex multiplication. In this chapter our goal is to generalize
this construction to curves of any genus such that the Jacobian admits an antisymmetric (with respect
to the Rosati dual) isogeny to itself. We now describe the setting of our construction.

Let k be an algebraically closed field and C/k a smooth projective curve of genus g. Let J be
the Jacobian variety of C' and let @1, ...,Q4 be g distinct closed points of C. As in Section let
¢ = &@.,....q,): C? — J be the map sending a closed point (Py,..., ;) € C9 to the divisor class of

?_(P;) — (Q;). Letting A denote the canonical principal polarization J — J¥ and applying Barsotti-
Weil to X o ¢, we obtain an extension

0 Gm E—"> Joa 0

that, over a closed point (P4, ..., Py) is the extension associated to A(>_(F;) — (Q;)). For any endomor-
phism ¢: J — J, we obtain a section 8y = 1 o ¢ x id of Jos over C9. For an endomorphism ¢: J — J
we will denote by ¢ = 1) — ¢ its antisymmetrization with respect to the Rosati dual  defined by the
canonical polarization. We will prove the following lifting theorem, analogous to Theorem 1 of Bertrand
2].

Theorem 4.1. For any endomorphism 1 of J, there exists an open dense subset U C CY9 and a section
ng 2 U — E such that
(1) pong = Bylu
(2) If P = (P1,...,Py) € U(k) is such that ¢(P) is torsion of order n, then n;(P) is torsion of
order dividing n>.

In the case that k = C and 1 is an isogeny, this theorem can be used to provide counterexamples
to relative Manin—-Mumford, and moreover a counterexample can be given using this technique for a
given curve if and only if there exists an antisymmetric (with respect to T) isogeny J — J. In Section
we recall Pink’s relative Manin—-Mumford conjecture, discuss the counterexamples of Bertrand and
Edixhoven and situate our work in relation to theirs, and show how Theorem can be used to give
a counterexample. In Section we prove Theorem by explicitly constructing the section n;. In
Section we show that if .J is simple, 1/ is an isogeny, and n is coprime to 2deg), then there is a
point P € U (k) such that ¢(P) is torsion of order n and 7;(p) is torsion of order n?, and thus the bound
on the order of the torsion points in Theorem [4.1| cannot be improved (at least for a section that is
produced by our construction). Finally, in Section we classify antisymmetric isogenies coming from
automorphisms of curves and use this classification to exhibit an explicit hyperelliptic curve for every
genus g > 1 whose Jacobian admits an antisymmetric isogeny and thus where the above construction
provides a counterexample to relative Manin—Mumford.

4.1. Relative Manin—Mumford

In this section we recall Pink’s relative Manin—-Mumford conjecture and the counterexamples given
by Bertrand and Edixhoven [2] and then situate our work in respect to theirs. We also show how Theorem
[41] can be used to give a counterexample. We first restate the conjecture.

Conjecture 4.2 (Pink’s relative Manin-Mumford [20, Conjecture 6.2]). Consider an algebraic family of
semiabelian varieties B/ X over an irreducible variety X/C and a closed subvariety Y C B. Assume that
Y is not contained in any proper closed subgroup scheme of B — X, and that it contains a Zariski-dense
subset of torsion points. Then dimY > dim B/X (where dim B/X is the dimension of the geometric
fibers of B/ X ).

28
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The first counterexample was given by Bertrand [2], Section 1] using Ribet sections on an elliptic
curve with complex multiplication, a technique that generalizes to any higher dimensional abelian variety
A admitting an antisymmetric isogeny AY — A (cf. [2, Remark 1.ii]). Edixhoven [2 Appendix] then
used pinching to give a concrete geometric construction of a similar counterexample in the case of an
elliptic curve with complex multiplication. Edixhoven’s approach also has the advantage that it gives
precise control over the order of the torsion points that appear. Our contribution is a generalization of
Edixhoven’s pinching construction to the case where the abelian variety A admitting an antisymmetric
isogeny is the Jacobian of a curve of any genus.

Remark 4.3. We note that the counterexample of Bertrand is not a counterexample to Pink’s general
conjecture on special subvarieties of mixed Shimura varieties [20, Conjectures 1.1-1.3], from which the
relative Manin—-Mumford conjecture was deduced. Indeed, Bertrand [2], Section 2| shows that the image
of the section he constructs is contained in a proper special subvariety, and thus argues that in this light
it is actually an example in support of Pink’s general conjecture. The problem with the relative Manin
Mumford conjecture as stated is that the deduction by Pink of the special subvarieties of a family of
semiabelian varieties in [20L Theorems 5.7 and 6.3] is incorrect, as remarked by Bertrand [2] Remark
2.2(i)]. Similarly, although we have not carried out the calculation, we expect that our counterexample
will also be contained in a proper special subvariety different than a closed subgroup scheme, and thus
will also not be a counterexample to Pink’s general conjecture. We plan to carry out this calculation in
a future work.

Remark 4.4. The relative Manin—-Mumford conjecture, and more generally the Zilber—Pink conjecture
for a family of abelian varieties, has been proven in some specific cases involving products of elliptic
curves — see, e.g., Masser and Zannier [15] and Habegger [9].

We describe now how Theorem can be used to give a counterexample to Conjecture (cf. also
[2 Section 1]).

Proposition 4.5. Let C/C be a smooth connected projective curve with Jacobian J. If ¢ € End(J) is
such that v is an isogeny, then, in the notation of Theorem |4.1 771[,(U) C Ey is a counterexample to
Conjecture (Pink’s relative Manin—Mumford).

Remark. Such a 1 exists if and only if J admits an antisymmetric isogeny. Indeed, ¢ is always
antisymmetric, and if ¢ is an antisymmetric isogeny then 1 = 2 is also an isogeny.

PROOF. The extension E/CY has relative dimension g + 1, and since 1 is an isogeny the image of
ny has dimension g, and thus it remains only to show that torsion points are dense and that the image
is not contained in any proper closed sub-group variety. That torsion points are dense follows from the
density of torsion points in J and the property that for a point P € U(C), n;(P) is torsion whenever
¢(P) is. Finally, the following lemma shows that 7;(U) is not contained in a proper closed sub-group
scheme:

Lemma 4.6. If ¢ is an isogeny then Unczn - ng(U) = Ey.

PrOOF. (Of lemma) Suppose u € U(C) is a point such that the multiples of 1 o ¢(u) are dense in
J(C). Note that this implies that ¢(u) has infinite order in J(C). We claim that at such a u the multiples
of 15(u) are also dense in E,. Indeed, let X denote the closure of the multiples of 7;(u) in E,. The
image of X in J(C) contains the multiples of ¥ o ¢(u) and thus is dense. Since the image of X in J is
constructible and dense, it must contain an open set, and then since it is closed under the group law it
must be equal to all of J. Thus, X surjects onto J. Since X is a group variety, the fiber of X over any
point in J(C) is isomorphic to the fiber over the identity element 0 € J(C). But the fiber X, over the
identity is a closed subvariety of G,,, and thus either finite or all of G,,. If it were finite, then X — J
would be a finite étale map, and as F, x5 X — X admits a section, this contradicts the fact that ¢(u)
has infinite order, since the extension E,, is the extension associated to the point ¢(u). Thus the fiber
Xy is all of G,,, and we conclude that X contains the entire fiber over every point of J, showing that
X =F,.

Thus, Upeznng(U) contains the fiber E, over every point u € U(C) such that the multiples of
¥ o ¢(u) are dense in J(C). We claim that this is a dense subset of U, and the conclusion will follow.
Indeed, the set

W = {z € J(C) | the multiples of = are dense in J}

has dense intersection with every open subset of J because J is an abelian variety over C. Now, the
image of U under 1 o ¢ is dense in J since 1 is an isogeny and the image of ¢ is dense in J, and since the
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map 1) o ¢ is generically finite, there exists a non-empty open subset V of J such that v o ¢, restricted
to a map (¢ o ¢)~H(V) — V, is a finite morphism (see [10, Exercise I11.3.7] — note also that in the
case we are in, one could also prove directly the existence of such a V). But then (¢ o ¢)~1(V N W)
must be dense in (1) 0 ¢)~*(V), because otherwise V N W cannot be dense in V (the image under v o ¢
of (10 #)~1(V N W) would otherwise be a proper closed subset containing V' N W). Thus, the set of
u € U(C) such that the multiples of 1) o ¢(u) are dense in J(C) is dense in U, and we are done. O

This concludes the proof of the proposition. O

4.2. Constructing the lift
The following lemma will be crucial in our construction:

Lemma 4.7. Let k be an algebraically closed field and let X and Y be smooth proper curves over k. Let
a and 7y be non-constant morphisms from'Y to X and let D be a divisor on X such that nD = (f) for
a rational function f on X (i.e. [D] is torsion of order dividing n in Pic®(X)). If

Noc(f 07)

Ny(foa)
so that Divg = n - (asy*D — v.a* D), and if Divf and Divg have disjoint support and Div(f o «) and
Div(f o~) have disjoint support, then g(D)™ = 1.

PROOF. The result follows from multiple applications of Weil reciprocity (stated in Theorem [2.2) as
in [2] Appendix], where an analogous result is shown in the case of divisors of the form P — @ on elliptic
curves when Y = X and « is the identity. Indeed,

g(D)" =
and, by Weil reciprocity,

g9(D)" = f(Divg)
f(a.y*Divf)
f(v«a*Divf)
_ JoalyDivy)
~ for(a*Divf)

and, applying Weil reciprocity to the numerator,

n _ fov(a*Divf)
g(D)" = f oy(a*Divf)
=1

as desired. m

We now want to construct a lift n; of 3; over an open subset U C CY to prove Theorem F

We will use the construction of the extension E over an open set explained in Section Namely,
let U be the open subset of C'Y consisting of points not containing any of the coordinates ); and not
containing any points with repeated coordinate. On U we have 2¢g disjoint sections p;, g; of U x C', where
p; sends a point (P, ..., Py) to (P, ..., Py) X (P;) and ¢; sends a point (P, ..., Py) to (Pi, ..., Py) X (Q;)-
Pinching these sections in pairs (p;,¢;) as in Theorem we obtain the associated extension (cf.
, which is determined by the property that its fiber over each point P = (P4, ..., P;) € C9(k) is the
extension associated to ¢(P) € J(k), and is thus equal to Ey.

We write the pinching of the (p;, ;) as
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where X =U x C, Z =U(U; 1 UU,2) and Z’' = UU; where U;, U; 1 and U, 5 are all copies of U, ¢ is the
map sending both U; ; and U 2 to U; by the identity map, ¢ is the closed immersion given on U; 1 by p;
and on U, 2 by ¢;, and X’ is the corresponding pinching.

Over U the extension fits into the following commutative diagram with exact rows (cf. Theorem
and the discussion following it):

0 ng J’ JU 0
lpmd l lld
b "
0 G, Ey Ju 0

where J' is the relative Jacobian of X'/U. We will produce 7, by giving a section of J’ and then
composing with the quotient map J' — Ey.

Fix a representation ¢ = ). a;y; as in Proposition so that ) = > (auy; — Yiea)). We can
assume that ; # «a; for all ¢ since in that case we may remove them from our representation of ). We
will need a quick lemma:

Lemma 4.8. If o # 7 are non-constant morphisms Y — X of smooth proper curves over an algebraically
closed field k then for any n € Z* there exists a non-empty open subset Uy, C X™ such that for all
closed points (Py, ..., Py) € Upy, a H({Pry .., P, Y) Ny H{ Py, .o, P }) = 0.

Proor. Werewrite ™ ({P1, ..., P, )y ({ P, ooy Pu}) = Uy, @ (BN~ (Pr). Thus, it suffices
to show for each I, m that the set such that a=*(P)Ny~1(P,,) = 0 is open. But a=}(P) Ny~ (Py) # 0
if and only if there is a Q € Y s.t. a(Q) = P, and v(Q) = P,,. If | # m then this happens only on a
proper closed set corresponding to the image of X in X2 under the map (a, ) (that is, on the inverse
image of this closed set under the projection X™ — X? corresponding to the /th and mth places). If
I = m then since a # v they agree only on a closed finite set of X and so we are finished. O

Consider the Weil divisor D on X (recall X = U x C) given by D = >7_, p;(U) — ¢;(U) and let
D' =% (qisy} — i) D, where 7; and «; are here considered as maps U x Y; — X, and remove from
the base U the projections of SuppD N SuppD’ and Suppa} D N Suppy; D for all i. We want our base
to remain a non-empty open set, and so we claim that we can make choices that ensure that these are
proper subsets of U (they are automatically closed since projection to U is a closed map): indeed, it
suffices to show that for each of these there is at least one point of U where they do not intersect the
fibers. After potentially changing the @Q;, Lemma guarantees that this is possible.

To give a section of J’ over U is to give an element of Picg(,/S(U). Consider the triplet (Lp/, Oz, 0)
where o is the composition of the canonical isomorphisms *Lp — Oz — ¢*Oyz (the first one coming
from the fact that Z N SuppD’ is trivial). This defines a line bundle on X’, and we let 1y be the
corresponding section of J’ and ny be the section of £ given by composition with the quotient J "= E.
Clearly 1 is a lift of 3, and the following lemma shows that it behaves as desired with respect to torsion
points.

Lemma 4.9. Let P = (Py,...,P,) € U(k) be such that the class of the divisor D = Y 7_| P, — Q; is
torsion of order n in Pic’(C). Then ng(P) is torsion of order dividing n* in Ep(k).

PROOF. By the compatibility of the relative Picard functor with base extension (Proposition
and by the compatibility of pinching in flat families with base extension (Theorem7 Jp is the relative
Jacobian of the curve C'p obtained by pinching along the {P;, Q;}, and the point 7;(P) corresponds to
the triplet (Lp; ,0z;,,0p) where we set Dp = S P = Qi, Dp = > (ap] — viva)Dp and op
is the composition of the canonical isomorphisms tpLp, — Oz, — ¢pOz,. Multiplying by n?, we
obtain the triplet (EnzD/P, Oz, cp) where ¢p is the canonical isomorphism tpLln2py, = Oz, = qpOzs,.
By Lemma n?D’, = Divg where g is a function such that g(Dp) = 1 (take g equal to the nth
power of the function given by the lemma). Multiplication by g gives an isomorphism L2 p, — Oc,
and thus identifies (anD%7(’)Z}7ap) with (O¢, Oz, (1/g) - cp) where cp is the canonical isomorphism
p0c = Oz, — q};OZ/P (this is really the same cp as above since ﬁn?D;, = O¢ in an open set viewed
as sub-sheafs of the sheaf of rational functions). Under our identification of the kernel of 7* with GY,,
(Oc,0z,,(1/g) - cp) corresponds to the point (g(F;)/g(Q:))i- In particular, under the map prod this
goes to g(Dp), which is equal to 1, and thus n?n;(P) = 1, as desired. O
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4.3. Controlling the order of lifts

In this section we assume that the characteristic of k is 0. As with Edixhoven’s construction on
elliptic curves (cf. [2, Appendix, Remark 3.i]), we can use the Weil pairing to show that if ¢ is an
isogeny and J is simple then for n coprime to 2 - deg® there exists a point P € U(C) such that U&(P)
has order equal to n?. To show this, we begin with two lemmas connecting the order of U (P) and the
WEeil pairing:

Lemma 4.10. Let D be a divisor such that [D] is of order n in J(k) and let D" =3, (ciwy} — yiwcf) D
so that D" represents ¥([D]). Let f be a function with Divf =nD and let

a7 fo ’Yz
-5 ea
so that Divg =n - D'. If e, is the Weil pairing on J(k)[n] then
en([D],9([D])) = 1/9(D)*.

PrOOF. By the characterization of the Weil pairing given at the end of Section [2.5.2

en([D], w([D])) =f(D')/9(D)
and thus it suffices to show that f(D’) = 1/g(D). Indeed,

(D" :Hf(ai*'ﬁD —Yixa; D)
Ny, (f 0 24))(D)
_H[ (N, (f 27:))(D)
=1/9(D)

Remark. When n is not divisible by 2, Lemma [£.10] gives another proof of Lemma [4.7]

Lemma 4.11. The pairing {,): (z,y) = en(x,9y) on Jn] x J[n] is symmetric. If 1 is an isogeny of
degree prime to n then (,) is non-degenerate (in the sense that if (x,y) = 1Yy € J[n] then x =0).

ProOOF. By Lemma (which says that t is the adjoint operator for e,,), we have
(x,y) = €n(.13, &y) = en(quxﬁ y)?

and since v is antisymmetric and e,, is skew-symmetric,

en(¥iz,y) = en(—vz,y) = en(y, ¥z) = (y,2),

and thus the pairing is symmetric. If ¢ is an isogeny of degree prime to n then it is an automorphism
on the n—torsion and non-degeneracy follows from non-degeneracy of e,,. O

Now, for P = (P,...,Py) € U(C) such that D = Y P; — Q; has order n, n;(P) has order n?
if and only if g(D) is a primitive nth root of unity (cf. the proof of Lemma [£.9). Thus, by Lemma
if n is coprime to 2 then 7;(P) has order n* if and only if en([D],¥[D]) is a primitive nth root
of unity. If n is also coprime to the degree of ¢ then the pairing (,) of Lemma is symmetric
non-degenerate (assuming still that ) is an isogeny). Since n is coprime to 2, this implies that there
exists an element x € J[n] such that (x,z) is a primitive nth root of unity: suppose not, then, since
(x,y) = [(x +y,2 +y)/((z,2) - (y,y))]"/? (the square root is well defined since we are coprime to 2),
we see that the image of (,) is contained in ., for some m that is a proper divisor of n. But then
m times any element of order n is degenerate for the pairing, a contradiction. Thus we obtain a point
P € C9(C) such that ¢(P) has order n and such that, if it is in U(C), its image under n,; has order
n?. The complement of the image of U in .J is contained in a closed and a proper subset of .J, and thus
by a general form of Mordell-Lang there is some finite set of translates of proper abelian subvarieties
of J containing all of the torsion points that are outside of the image of U (see the statement “Lang’s
conjecture (absolute form, characteristic 0)” on page 10 of [11]). If J is simple then this implies that U
must contain all but finitely many torsion points, and thus for sufficiently large n we can find a point of
order n as above in U(C).

Remark. I do not know if U will or will not contain a point of order n of the form desired if J is not
simple.
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4.4. Explicit examples

Proposition gives a counterexample to relative Manin—-Mumford on the Jacobian of any curve
admitting an antisymmetric isogeny. In this section, we characterize the automorphisms « of a smooth
projective curve C//C such that

=0, — o =, — (04_1)*
is an isogeny from JacC' to itself, and use this characterization in order to give explicit examples. In
Theorem we characterize such C' and «, and in Example we use this characterization to give
examples of curves of every genus g > 1 admitting antisymmetric isogenies, and thus to which we can
apply Proposition to give explicit counterexamples to relative Manin—Mumford.

Theorem 4.12. Let C'/C be a smooth projective curve of genus g > 1 and let o be an automorphism of
C of order n. Then & = a, — ™ is an isogeny if and only if either
e n is odd and the quotient C' of C by the action of Z/nZ on C induced by « is isomorphic to
P!,
e n is even and the quotient C' of C by the action of /57 on C induced by a? is isomorphic to
P!,

PROOF. In the case n = 1, we have a = id, @, = 0, and C’ = C', and thus C’ is not isomorphic to
P! since g > 1. Thus the result holds in this case. So, we can assume n > 1.

Let f, be the minimal polynomial of «, considered as an element of the finite dimensional Q-
algebra End”(JacC) = Q ® End(JacC). We obtain an injection ¢: Q[z]/fo < End’(JacC) by & — ov,.
We observe that

(a*)n — idjacc = (an)* —idjacc =0
since « has order n, and thus f,|z™ — 1.

We observe that x is invertible in Q[X]/f, and 27! maps to (o)™ ! = (1), = a* . Note that @,
is invertible in EndO(JacC) if and only if @, is an isogeny, and furthermore, since a is invertible, @ is
an isogeny if and only if (o) (@) = (a?). — idjacc is an isogeny. Note that ¢(2% — 1) = (a?), — idjaco-
Thus, to show that @, is an isogeny it suffices to show that 2% — 1 is invertible in Q[X]/f,. Decomposing
fa as a product of cyclotomic polynomials and applying the Chinese remainder theorem, we see this is
the case if and only if f, is not divisible by (x — 1) or (x +1). On the other hand, to show that @ is not
an isogeny, it suffices to show that there exists g € Q[x]/f, such that ¢(g) # 0 and (z? —1)-g =0 in
Q[z]/ fa, since then @y is either zero or a zero divisor and in particular is not invertible. We now break
into cases.

Suppose n is odd. We first show that if the quotient is P! then @ is invertible. By the remarks
above, since (x +1) 1 (z™ — 1) (n is odd), it suffices to show that f, divides (z™ —1)/(x —1) = Z;:Ol 27,
or equivalently that Z;:&(a*)j = 0 in End’(JacC). But for P € C(C),

n—1 n—1
Y (@) (P) = (a7(P)) = 7" (x(P))
j=0 j=0

where 7 is the quotient morphism 7: C — C’. Thus, by linearity, for all degree 0 divisors D on C,
n—1

Z(a*)j[D] =" (D] =0

=0
since [r.D] = 0 as it is the class of a degree zero divisor on C” = P!

We now show the other direction (still assuming n to be odd). To do so, we will show that if the
quotient C’ is not P! then @ is not invertible. Observe that

n—1
(m2—1)~ij:0
§=0

in Q[z]/ fo since it is divisible by ™ — 1, and so by the remarks above it suffices to show that

o3 #7) = 3 (e £0
7=0 j=0

in End’(JacC). So, suppose D is a degree 0 divisor on C' such that Z;L:_(Jl (o)’ ([D]) = 0. As above, this
implies
m*m.[D] = 0.
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Since m,7* is multiplication by degm on JacC’, this implies n - 7.[D] = 0. Since 7, is surjective and
the dimension of JacC” is greater than 0 (C’ has genus greater than 0), there exists a [D] € JacC(C)
such that n - m,[D] is non-zero, and thus Z?;()l(a*)j is non-zero in End’(JacC), as desired.
Thus we have completed the odd case. The case of n even is proven identically, except in both
directions we must use the polynomial
n/2—1

(z" —1)/(2* = 1) Z x?
instead of
(2" =1)/(x—1) Z e

because when n is even x + 1 also divides 2z — 1. In partlcular, the fact that only even powers appear
in the sum is why in the even case we must consider the quotient by the action of o? instead of that by
the action of a. O

Example 4.13. We give some applications of Theorem

(1) Let K be a cyclic extension of C(t) of odd degree and let C'— P! be the corresponding ramified
covering of smooth curves. Suppose that the genus of C is greater than or equal to 1. Then for
« an automorphism of C' generating the Galois group of K/C(t), the quotient of C' by « is P!,
and thus by Theorem [I.12] @ is an isogeny and Proposition [{.5 applies, giving a counterexample
to relative Manin—-Mumford.

(2) Let n > 3 and let C/C be the hyperelliptic curve defined by the equation y?> = 2™ — 1, and
let J = JacC. Let a be the automorphism of C given by (zo,y0) — ((no,yo) where ¢, is
a primitive n—th root of unity. Then Theorem shows a, — a® = a5 is an antisymmetric
isogeny of J. Indeed, for n odd the quotient C’ of C by « is given by the curve y? = x — 1,
which is isomorphic to P!, with the quotient map C' — C” given by (zq, o) — (25, o). For n
even the quotient C’ of C by o2 is given by the curve y? = 22 — 1, again isomorphic to P*, with
the quotient map given by (xo,yo) — (xg/Q, o). In particular, since the curve y? = 2" — 1 has
genus | 251 |, we obtain for every g > 1 an explicit curve of genus g whose Jacobian admits
an explicit antisymmetric isogeny, and thus to which Proposition applies. This gives an
explicit counterexample to relative Manin—-Mumford for every genus g > 1.

(3) For any smooth projective curve C’/C of genus g > 1, let C — C’ be the curve corresponding
to a cyclic extension of k(C"). Then C admits an automorphism « generating the cyclic group
of the extension such that C — C’ is the quotient by . Then whether o has even or odd
order, the quotient appearing in Theorem lies between C' and C’ and in particular is not
isomorphic to P!, implying that @ is not an isogeny.

Remark 4.14. For p an odd prime, the proof of Theorem also shows that if C'//C is a smooth
projective curve of genus g = % admitting an automorphism « of order p such that the quotient of C
by Z/pZ = (a) is P!, then JacC has complex multiplication. Indeed, the proof shows that End®(JacC)

contains the CM-field Q[z]/(zP~! + ... + 1) of dimension 2g = 2 - dim JacC over Q with the Rosati
involution extending the complex conjugation. This remark applies, for example, to the hyperelliptic

curves y? = 2P — 1 of Example (2).
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