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Introduction

The main object of study in this project is the so called cup product, a structure
in cohomology that is important in algebraic topology.

There are various cohomology theories of topological spaces: there is singular
cohomology, which is obtained by dualizing the singular chain complexes of sin-
gular homology; sheaf cohomology, which involves the right derived functors of
the global sections functor of sheaves on a space X; and there is Čech cohomol-
ogy, where a space X is approximated by taking suitable open covers. All these
theories come with the additional structure of a cup product.

Under certain conditions these theories yield isomorphic cohomology groups.
Our goal has been to understand these isomorphisms. Additionally, we have
tried to verify that they respect the cup product structure. It turns out that,
after developing the right tools, there are natural proofs showing that this is
indeed the case. The most important realization is that the cup product struc-
tures in the different cohomology theories are all determined by chain maps from
a total complex (I ⊗J )•Tot of certain pure resolutions I• and J • to a pure res-
olution K•, where the resolutions depend on the approach to cohomology that
is considered (singular, sheaf, or Čech). Here a pure resolution is a resolution
that remains exact upon tensoring with any sheaf F .
The main work is in understanding pure monomorphisms in the category of
sheaves, and the so called pure injectives, objects that have the injective property
with respect to pure monomorphisms. These notions were already studied and
used to define cup products in a very general setting in [8]. We study them more
concretely in the category of sheaves, which also requires a detour through the
category of abelian groups.

The structure of this thesis is as follows. We first introduce some theory of
singular cohomology, following [1], and we introduce the cup product. As a
little aside we give a nice and short proof of Borsuk-Ulam, which exploits the
cup product structure of cohomology that is lacking in homology.

The main part of the thesis is section 2. We first give an introduction to sheaf
cohomology, following [2]. Then we study pure monomorphisms and pure injec-
tives in the category of sheaves, and use them to define the cup product as in
[8]. We give an introduction to Čech cohomology, and we show that under cer-
tain assumptions there is a natural isomorphism between sheaf cohomology and
Čech cohomology that respects the cup product structure. Finally we show how
Čech cohomology is used for finding concrete cohomology rings by computing
H∗(P 2,Z/2Z), with P 2 the real projective plane.

In the final section of the thesis, we provide a detailed account of the construc-
tion of the isomorphism between singular cohomology and sheaf cohomology
given in [2]. Using the same trick as with Čech cohomology, we show that also
this isomorphism respects the cup product structure.
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1 Singular cohomology

1.1 Definitions

In this section we follow [1], chapter 3.

We start with an algebraic discussion of singular cohomology groups of com-
plexes of free abelian groups. Let C be a chain complex of free abelian groups

· · · ∂n+2−−−→ Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1
∂n−1−−−→ · · ·

and let G be an abelian group. Define Cn = Hom(Cn, G), and let δn = ∂∗n :
Cn−1 → Cn be precomposition by ∂. Since ∂2 = 0 we have δ2 = 0, so we get a
complex C•

· · · δn+2

←−−− Cn+1 δn+1

←−−− Cn δn←− Cn−1 δn−1

←−−− · · ·

dual to the complex C. We define the n-th cohomology group of C with values
in G to be the n-th homology group of C•, so Hn(C;G) = ker δn+1/im δn.

We have the following relation between singular homology groups and cohomol-
ogy groups with values in G.

Theorem 1.1 (Universal Coefficient Theorem for Cohomology). If a chain
complex C of free abelian groups has homology groups Hn(C), then the coho-
mology groups Hn(C;G) of the cochain complex Hom(Cn, G) are determined by
natural split exact sequences

0→ Ext(Hn−1(C), G)→ Hn(C;G) −→ Hom(Hn(C), G)→ 0 (1)

These exact sequences are natural in the following sense: if we are given a chain
map f : C → C ′, it induces a commutative diagram

0 Ext(Hn−1(C,G) Hn(C;G) Hom(Hn(C), G) 0

0 Ext(Hn−1(C ′, G) Hn(C ′;G) Hom(Hn(C ′), G) 0

(f∗)
∗ f∗ (f∗)

∗

Proof. See [1] paragraph 3.1.

It should be noted that although the sequences are natural in the sense ex-
plained, the splitting is not natural.

Because we will not go very deep into singular cohomology in this thesis, we
do not specify the maps appearing in the theorem: we will only need it for
some short computations, for which the above suffices. For the same reason,
we will not give the definition of the Ext groups appearing in the sequence (the
interested reader can consult [1] paragraph 3.1), but we will just explain how
they can be computed for finitely generated groups. This can be done using the
following proposition.
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Proposition 1.2. Suppose H,H ′ are abelian groups. Then we have the follow-
ing identities:

• Ext(H ⊕H ′, G) ∼= Ext(H,G)⊕ Ext(H ′, G).

• Ext(H,G) = 0 if H is free.

• Ext(Z/nZ, G) ∼= G/nG, where n is a non-zero integer.

Now let X be a topological space. We can do the above construction with C(X)
the singular chain complex of X, i.e. Cn(X) is the free group generated by n-
simplices σ : ∆n → X in X. Since these n-simplices form a basis for Cn(X),
and giving a homomorphism on a free group is the same as giving values on a
basis, we can view the cochain group Cn(X;G) as the functions from the set of
n-simplices in X to G. So for example, C0(X;G) can be viewed as the set of
functions from X to G (without any continuity restrictions).

We define the n-th cohomology group of X with values in G by Hn(X;G) =
Hn(C(X);G). By theorem 1.1 these cohomology groups fit in the natural split
exact sequences

0→ Ext(Hn−1(X), G)→ Hn(X;G) −→ Hom(Hn(X), G)→ 0 (2)

The following lemma provides a useful interpretation of H1(X;G) for path con-
nected spaces; we will use it to give a natural proof of Borsuk-Ulam.

Lemma 1.3. Let X be a path connected space. Then there is a natural isomor-
phism H1(X;G)

∼−→ Hom(H1(X), G) = Hom(π1(X), G).

Proof. For every topological space H0(X) is free, being a direct sum of Z’s
with precisely one summand per path component. Hence sequence (2) yields
the first isomorphism for any space X. In case X is path connected, H1(X) is
naturally isomorphic to the abelianization of π1(X). SinceG is an abelian group,
this implies the last equality, since any homomorphism π1(X) → G factorizes
through H1(X).

Since in this thesis we will mostly concern ourselves with comparing various
cohomology theories, we will not give the various tools that are available for
actually computing the cohomology of a concrete space X. These tools (similar
to the ones in homology) can also be found in [1] paragraph 3.1.

1.2 Cup product in singular cohomology

An interesting structure in cohmology that is not present is the cup product. It
turns out there is a natural way of defining a product on cohomology, which
carries some extra information that bare cohomology groups don’t have: this
allows one to distinguish spaces one couldn’t from the homology or cohomology
groups alone. An example of this will be given later on in the thesis, in section
2.5.
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Let X be a topological space. Suppose A and B are abelian groups. Let
φ ∈ Ck(X;A) and ψ ∈ Cl(X;B), so φ is a function from the set of k-simplices
inX to A and ψ is a function from the set of l-simplices inX toB. If σ : ∆k+l :→
X is a (k + l)-simplex in X, its restrictions σ|[v0, · · · , vk] and σ|[vk, · · · , vk+l]
are respectively a k and an l simplex in X. This allows us to define a map
φ ^ ψ ∈ Ck+l(X;A⊗B) in terms of φ and ψ:

(φ ^ ψ)(σ) = φ(σ|[v0, · · · , vk])⊗ ψ(σ|[vk, · · · , vk+l]).

By properties of tensor products, this gives a bilinear map

^: Ck(X;A)× Cl(X;B) −→ Ck+l(X;A⊗B),

and by the universal property of the tensor product, this uniquely defines a map

^: Ck(X;A)⊗ Cl(X;B) −→ Ck+l(X;A⊗B).

The two ways of considering this map, one as a bilinear map from the direct
product and the other as a homomorphism from the tensor product, are equiva-
lent. We will mostly use the second way, as it is more natural in our discussion.
The following identity is crucial and in a sense defining (to be made clear later
on in the thesis) of the cup product.

Lemma 1.4. We have δ(φ ^ ψ) = δφ ^ ψ + (−1)kφ ^ δψ.

Proof. We write out the proof of the equivalent relation for the cup product in
Čech cohomology in lemma 2.44. The reader may check that the two proofs are
essentially identical.

The equality δ(φ ^ ψ) = δφ ^ ψ + (−1)kφ ^ δψ shows that if φ and ψ are
cocycles (i.e. δφ = δψ = 0), then δ(φ ^ ψ) = 0 , so φ ^ ψ is a cocycle. It
is also clear that the product of a cocycle and a coboundary, in either order, is
again a coboundary (since one of the two terms in the sum on the right hand
side vanishes in that case). From this it follows that we obtain bilinear maps
maps

^: Hk(X;A)⊗Hl(X;B) −→ Hk+l(X;A⊗B)

called the cup product. If we take A = B = R a ring, this makes the direct sum

H∗(X;R) =
⊕
k∈N

Hk(X;R)

into a graded ring, which we call the cohomology ring of X.
The following example is fundamental.

Theorem 1.5. Let Pn be the n-dimensional real projective space. Then

H∗(Pn;Z/2Z) ∼= Z/2Z[α]/(αn+1)

with α ∈ H1(Pn;Z/2Z).

Proof. We do the computation for n = 2 in section 2.5 using Čech cohomology.
For a proof of the general case see theorem 3.12 in [1].
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1.3 Proof of Borsuk-Ulam

As an application of cohomology rings, we give a natural proof of the theorem
of Borsuk-Ulam using cohomology.

Theorem 1.6 (Borsuk-Ulam). Let f : Sn → Sn be an odd map, i.e. a map
satisfying f(−x) = −f(x). Then deg f is odd.

We first develop some theory of covering spaces. Let X be a connected, locally
path-connected and semilocally simply connected space, and choose a basepoint
x ∈ X. Then X has a universal cover u : (X̃, x̃) → (X,x). In this case, there
is a correspondence between the set of homomorphisms π1(X,x) → G and the
set of isomorphism classes of pointed G-coverings of X.

Theorem 1.7. There is a bijective correspondence between the set of homo-
morphisms ρ : π1(X,x) → G and the set of pointed G-coverings of X up to
G-isomorphism:

Hom(π1(X,x), G) ∼= {p : (Y, y)→ (X,x) G− covering}/ ∼

where ∼ indicates G-isomorphism.

In this correspondence, given a G-covering p : (Y, y)→ (X,x), a homomorphism
ρp : π1(X,x) → G is constructed as follows: for [γ] ∈ π1(X,x) the element
ρp([γ]) ∈ G is determined by the action ρp([γ])y = y ∗ γ, where the action on
the right hand side is the monodromy action.

Suppose p : (Y, y) → (X,x) is a G-cover, and suppose we have a map f :
(Z, z) → (X,x). Then the fibre product (Y ×X Z, (y, z)), which fits in the the
commutative diagram

(Y ×X Z, (y, z)) (Y, y)

(Z, z) (X,x)

q p

f

(3)

is a G-cover of (Z, z) via q.

Let ρp : π1(X,x)→ G denote the homomorphism corresponding to p : (Y, y)→
(X,x), and similarly let ρq : π1(Z, z) → G denote the homomorphism corre-
sponding to q : (Y ×X Z, (y, z))→ (Z, z).

Lemma 1.8. We have ρq = ρp ◦ f∗, where f∗ : π1(Z, z)→ π1(X,x) is the map
induced by f .

Proof. We have to show that for all [η] ∈ π1(Z, z) we have

(ρp ◦ f∗)([η])(y, z) = (y, z) ∗ η.

Let γ = f ◦ η, then ρp(γ)y = y ∗ γ, hence (ρp ◦ f∗)([η])(y, z) = (y ∗ γ, z). But
also (y, z) ∗ η = (y ∗ γ, z) by commutativity of the diagram 3. Hence we are
done.
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In this section we will denote by Pn the real projective space RPn and set
G = Z/2Z. We will use that Sn is a Z2/Zcover of Pn, where the action of Z/2Z
on Sn is given by x 7→ −x. Let p : Sn → Pn be the corresponding quotient
map.

Note that an odd map f : Sn → Sn induces a quotient map f : Pn → Pn

making the diagram

Sn Sn

Pn Pn

f

p p

f

(4)

commute. This diagram induces a commutative diagram of cohomology groups

Hk(Sn;Z/2Z) Hk(Sn;Z/2Z)

Hk(Pn;Z/2Z) Hk(Pn;Z/2Z)
f
∗

p∗p∗

f

(5)

with the arrows going in the other direction.

Proposition 1.9. The map f
∗

: H1(Pn;Z/2Z)→ H1(Pn;Z/2Z) is an isomor-
phism.

Proof. 1.9 Using theorem 1.7 we can interpret H1(Pn;Z/2Z) as the set of Z/2Z-
coverings of Pn. Using lemma 1.8 we see that the map f

∗
sends the covering

Sn → Pn to the fibre product Sn ×Pn Pn → Pn. By the universal property of
the fibre product and diagram 4, we get a continuous map Sn → Sn ×Pn Pn.
This map is bijective on fibers and by definition is a map of coverings, so it
is an isomorphism. Hence Sn ×Pn Pn → Pn cannot be the trivial covering
Z/2Z× Pn → Pn, which shows f

∗
is non-trivial.

Proof. 1.6 Since H∗(Pn;Z/2Z) = Z/2Z[α]/(αn+1) with α ∈ H1(Pn;Z/2Z) by
1.5. from proposition 1.9 we conclude that also

Hn(Pn;Z/2Z)
f
∗

−→ Hn(Pn;Z/2Z)

is non-trivial. It is well known that this map is multiplication by deg f mod 2,
from which we conclude the theorem.
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2 Sheaf Cohomology

2.1 Definitions

Another theory of cohomology is cohomology of sheaves on a topological space
X, computed using injective resolution. The notions involved make sense for a
class of categories called abelian categories, defined in [2] paragraph 4.2.1: they
are categories with some additional structure, which for example allow us to
talk about exact sequences. We will follow [2] in developing cohomology in this
general setting. The category of sheaves on a topological space X has a natural
structure of abelian category (as [2] shows in paragraph 4.1), so we can apply
the results obtained in the more general case to define sheaf cohomology.

Definition 2.1. Let C be an abelian category. An object I in C is called injective
if for every morphism φ : A → I together with a monomorphism i : A → B
there is an extension morphism ψ : B → I, such that φ = ψ ◦ i.

Exercise 2.2. Show that I is injective if and only if the functor Hom(−, I) :
C → Ab is exact.

Definition 2.3. Let C be an abelian category and A be an object in C. We
say j : A → M• is a resolution if it is an exact complex in C. A resolution
j : A →M• is called injective ifMi is injective for all i ≥ 0.

We say an abelian category C has enough injectives if every object A in C
admits a monomorphism j : A → I0 into an injective object. If we have such an
embedding for A and C has enough injectives, we can then embed the cokernel
object cokerj into another injective object I1. Continuing like this leads to the
following proposition.

Proposition 2.4. In an abelian category C with enough injectives, every object
admits an injective resolution.

Let i : A → I• be a resolution and let j : B → J • be an injective resolution.
Suppose we are given a morphism f : A → B. Then the defining property
of injective objects allows us to extend this to a chain map from A → I• to
B → J •, and even in a unique way, as is made precise in the following theorem.

Theorem 2.5. There exists a chain morphism φ : I• → J • satisfying j ◦ f =
f0 ◦ i. Moreover, φ is unique up to chain homotopy.

Proof. See [2] proposition 4.27. The chain map is constructed by consecutively
applying the injective property of the J i. The same is true for the construction
of the chain homotopy.

If I is also injective, this leads to the following result.

Corollary 2.6. Any two injective resolutions A → I• and A → J • are homo-
topy equivalent.

Proof. Theorem 2.5 gives chain morphisms φ : I• → J • and ψ : J • → I•
extending the identity, and moreover by theorem 2.5 ψ ◦ φ and φ ◦ ψ must be
homotopic to the identity on I•, respectively J •.
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Now let C and C′ be abelian categories, and F : C → C′ a left-exact functor. If
C has enough injectives, then corollary 2.6 allows us to define the right derived
functors with respect to F . In the case that C is the category of sheaves on a
space X, C′ the category of abelian groups, and F the global sections functor Γ,
the right derived functors will be the cohomology groups we sought to define.

Definition 2.7. Let A be an object of C, and let A → I• be an injective
resolution. Define the i’th right derived functor RiF (A) with respect to F of A
to be RiF (A) = Hi(F (I•)).

This definition does not depend on the chosen injective resolution, as any two
resolutions I• and J • are chain homotopy equivalent by 2.6, an thus so are the
complexes F (I•) and F (J •).
Some important properties of the right derived functors are the following.

Theorem 2.8. For objects F ,G,H of C, we have the following:

• R0F (F) = F (F)

• If
0→ F φ−→ G ψ−→ H → 0

is a short exact sequence in C, we can construct a natural long exact se-
quence

0→ F (F)
φ−→ F (G)

ψ−→ F (H)
∂−→ R1F (F)

φ∗−→ R1F (G)
ψ∗−−→ R1F (H)

∂−→ · · ·

in C′.

• If I is injective, then RiF (I) = 0 for i > 0.

Moreover, these three properties define the objects Ri(F (−)) up to canonical
isomorphism.

Proof. See [2] theorem 4.28.

The right derived functors can actually be calculated using acyclic resolutions,
which are often easier to find than injective resolutions.

Definition 2.9. An object M in C is called F -acyclic if RiF (M) = 0 for all
i > 0.

Let A → M• be a F -acyclic resolution of A (i.e. the Mi are F -acyclic).
Proposition 2.5 gives us a chain map

i :M• → I•

to an injective resolution of A induced by the identity, unique up to homotopy.

Proposition 2.10. The chain map i induces an isomorphism i∗ : Hi(F (M•)) ∼−→
RiF (A).
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Most authors give a natural isomorphism given by a boundary map ∂ in the
long exact sequence of 2.8, but they don’t verify that the canonical chain map
also induces an isomorphism. We verify it here.

Proof. We first follow the proof of proposition 4.32 in [2] and look at the short
exact sequences

0→ A→M0 → B → 0

and
0→ A→ I0 → C → 0,

where B = coker(A →M0) and C = coker(A → I0). Then the objects B and C
admit shifted resolutions

0→ B d0−→M1 → · · ·

and
0→ C d0−→ I1 → · · · ,

Since F is left exact we have

F (B) = ker(M1 →M2)

and
F (C) = ker(I1 → I2).

This means that the long exact sequences associated to the short exact sequences
give commutative diagrams

H1(F (M•)) coker(F (M0)→ F (B)) R1F (A)

H1(F (I•)) coker(F (I0)→ F (C)) R1F (A)

=

i∗

∂

id

= ∂

(6)

where ∂ induces an isomorphism because M0 and I0 are acyclic. We get a
natural isomorphism

i∗ : H1F (M•) ∼−→ R1F (A).

Also note i∗ induces an isomorphism i∗ : R1F (B)
∼−→ R1F (C), which will be

necessary later to use induction. For i ≥ 2 consider the short exact sequences

0→ coker di−2 di−1

−−−→Mi di−→ coker di → 0

and
0→ coker di−2 di−1

−−−→ Ii di−→ coker di → 0.
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Again, the two objects coker di admit shifted resolutions

0→ coker di di+1

−−−→Mi+1 → · · ·

0→ coker di di+1

−−−→ Ii+1 → · · ·

so by left exactness of F we get commutative diagrams

Hi(F (M•)) coker(F (Mi)→ F (coker di)) R1F (coker di−2)

Hi(F (I•)) coker(F (Ii)→ F (coker di)) R1F (coker di−2)

=

i∗

∂

i∗

= ∂

(7)

The map i∗ on the right is an isomorphism by induction and the maps ∂ are
isomorphisms becauseMi and Ii are acyclic. We conclude i∗ induces a natural
isomorphism

i∗ : HiF (M•) ∼−→ RiF (A)

.

We want to apply the developed machinery to the category of sheaves on a space
X. This means that we have to show this category has enough injectives, i.e.
for every sheaf F we have to construct an embedding j : F → I into an injective
sheaf.

Lemma 2.11. Let F be a sheaf on X. Define FGod by FGod(U) =
∏
x∈U Fx,

with the obvious restriction morphisms. Then FGod is a sheaf on X and the
canonical morphism given by F(U)→

∏
x∈U Fx is injective.

Proof. It is obvious that FGod is a sheaf. Suppose σ ∈ F(U) maps to 0 ∈∏
x∈U Fx. Then there exists an open cover (Ux)x∈U , where x ∈ Ux, such that

σ|Ux
= 0. By the unicity axiom of sheaves, σ = 0. So the map F(U)→

∏
x∈U Fx

is injective for all U ⊂ X open, so the morphism F → FGod is injective.

It is well known that Ab has enough injectives. If we define I(U) =
∏
x∈U Ix

where Ix is some injective group containing Fx, then using the above lemma we
get an injection F → I.

Lemma 2.12. The sheaf I is injective in the category of sheaves.

Proof. We clarify the proof in [9], chapter 3 proposition 2.2. Suppose we have a
morphism φ : K → I. For x ∈ X and U an open containing x this defines maps

φU,x : K(U)→ Ix

after projecting, from which we obtain maps φx : Kx → Ix (note, these are
not the maps on stalks induced by φ: the stalk Ix is not equal to Ix). To see
this, suppose f ∈ Kx is represented by σ, τ ∈ K(U). Then σ and τ agree when
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restricted to some open V ⊂ U , so φV (σ) = φV (τ), from which it follows that
φU,x(σ) = φU,x(τ). Then for all opens U ⊂ X we get commutative diagrams

K(U)
∏
x∈U Ix

∏
x∈U Kx

(8)

Since K(U) injects into
∏
x∈U Kx, the maps φx : Kx → Ix completely determine

the morphism K → I. On the other hand, providing maps Kx → Ix for all x ∈ X
clearly defines a morphism of sheaves K → I in view of the above diagram. We
conclude that the functor HomShX

(−, I) is the composition of the direct product
over all x ∈ X of the stalk functor, with the functor

∏
x∈X HomAb(−, Ix), which

are both exact functors. So HomShX
(−, I) is exact and we conclude that I is

injective by 2.2.

Hence we have shown that every sheaf F admits an embedding F → I into an
injective sheaf I. By 2.4, every sheaf admits an injective resolution F → I•.
After all this work, we can now finally define the cohomology groups of F .

Definition 2.13. Let F be a sheaf on X. Define Hi(X,F) = Ri(Γ(F)) =
Hi(Γ(I•)), where I• is any injective resolution of F and Γ is the global sections
functor.

A useful class of Γ-acyclic sheaves are the so called flasque sheaves.

Definition 2.14. A sheaf F is called flasque if the restriction morphisms ρUV :
F(U)→ F(V ) are surjective.

Proposition 2.15. Flasque sheaves are Γ-acyclic.

Proof. See [2], proposition 4.34.

By proposition 2.10, flasque resolutions can be used to calculate the cohomol-
ogy groups of a sheaf. The sheaf FGod of lemma 2.11 is an example of a flasque
sheaf. These particular kinds of flasque sheaves were first discovered by Gode-
ment. He used them to construct flasque resolutions of sheaves, as we will do
later, and defined sheaf cohomology in terms of those resolutions. The above
proposition shows this yields the same cohomology as when one works with
injective resolutions.

2.2 Cup product in sheaf cohomology

In this paragraph we use the ideas in [8], where the cup product is developed in
a very general setting. The notions of pure monomorphisms and pure injectives
(objects that have the injective property with respect to pure monomorphisms)
are central. We will investigate these notions in the category of sheaves: after
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taking a detour through abelian groups, we will develop criteria for morphisms
of sheaves to be pure, and give an explicit pure embedding of a sheaf F into a
pure injective I. After that we will define the cup product for sheaves, using
an approach that is a bit more general than in [8], in that we also consider
pure acyclic resolutions; this might be useful if one wants to compute concrete
cohomology rings. In this section C0 denotes either the category of sheaves on
a space X or the category of abelian groups, which are both abelian categories
that have a tensor product available with all the usual properties.

Definition 2.16. A double complex K•,• in C0 is a collection of objects Kp,q,
p, q ≥ 0, together with boundary morphisms D1 : Kp,q → Kp+1,q and D2 :
Kp,q → Kp,q+1 satisfying D2

1 = 0 = D2
2 and D1 ◦ D2 = D2 ◦ D1. The total

complex K•Tot associated to K•,• is the collection of objects Kn =
⊕

p+q=nK
p,q,

with boundary morphisms defined on Kp,q → Kp+1,q ⊕ Kp,q+1 by D = D1 +
(−1)pD2.

We first prove the following technical lemma.

Lemma 2.17. The total complex K•Tot associated to a double complex K•,• is
in fact a complex. If the rows and columns of K•,• are exact, then K• is an
exact complex.

Proof. We prove this for modules then from Mitchell’s embedding theorem it
follows for C. We consider Kn D−→ Kn+1 D′−−→ Kn+2. On Kp,q, p + q = n, the
boundary map is D1 + (−1)pD2, so a ∈ Kp,q is mapped to D1a+ (−1)pD2a ∈
Kp+1,q ⊕Kp,q+1. Applying D′ yields

D2
1a+ (−1)2pD2

2a+ (−1)p+1D2D1a+ (−1)pD1D2a = 0

since D2
1 = D2

2 = 0 and D1D2 = D2D1.

We show the other inclusion if the rows and columns of K•,• are exact. Sup-
pose an element (ap,q) ∈

⊕
p+q=nK

p,q maps to 0 under D. Then we have the
equations

D1an,0 = 0, D2ap,q = (−1)pD1ap−1,q+1, D2a0,n = 0,

where p+ q = n, 0 < p, q < n.

We see directly that an,0 = D1bn−1,0 for some bn,0 ∈ Kn−1,0. It follows that
D2D1bn,0 = D1D2bn,0 = (−1)n−1D1an−1,1, from which it follows that an−1,1 +
(−1)nD2bn−1,1 ∈ kerD1 = im D1. Hence an−1,1 = D1bn−1,1+(−1)n−1D2bn−1,1
with bn−1,1 ∈ Kn−2,1. Hence an−1,1 ∈ im D.

We do induction on q. Suppose by induction ap,q = D1bp−1,q + (−1)pD2bp,q+1.
ThenD1D2bp−1,q = D2D1bp−1,q = D2ap,q = (−1)p−1D1ap−1,q+1, henceD2bp−1,q+
(−1)pap−1,q+1 ∈ kerD1 = imD1. Hence ap−1,q+1 = D1bp−2,q+1+(−1)p−1D2bp−1,q,
and ap−1,q+1 ∈ im D.

We conclude by induction that (ap,q) ∈ im D.

Let F and G be sheaves on X, and let F → I•, G → J • be resolutions with
boundary maps respectively D1 and D2. Then the sheaves Ip⊗Jq with bound-
ary maps D1⊗id and id⊗D2 form a double complex (I⊗J )•,•, and we can form
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the total complex (I ⊗J )•Tot. To induce the desired cup product, we would like
a chain map from F ⊗ G → (I ⊗ J )•Tot to an injective resolution F ⊗ G → K•,
but there is a problem: although F ⊗ G → (I ⊗ J )•Tot forms a complex, it is
not a resolution, since the rows and columns in the double complex (I ⊗ J )•,•

are not exact. To overcome this difficulty, we have to work with so called pure
resolutions.

Definition 2.18. In C0 an exact sequence

A f−→ B g−→ C

is called pure if for every object D the induced sequence

A⊗D f⊗id−−−→ B ⊗D g⊗id−−−→ C ⊗D

is exact.

A resolution A →M• is called pure if A →M0 is a pure monomorphism (i.e.
0→ A→M0 is pure exact) and ifM• is pure exact at every object.

Since the functor − ⊗ D is right exact, we will be mostly interested in under-
standing pure monomorphisms. A big class of pure monomorphisms is formed
by inclusions of a direct summand into a direct sum.

Lemma 2.19. Embeddings A → A⊕B of the form (id, 0) into a direct sum are
pure.

Proof. Tensoring with C yields

(A⊗ C) (id,0)−−−→ (A⊗ C)⊕ (C ⊗ B)

since the tensor product distributes over direct sums. This is clearly a monomor-
phism.

In the category of abelian groups, injective objects are precisely the divisible
groups. So if we have a monomorphism Z → I into an injective I, tensoring
with Q/Z we get Q/Z → 0, as I ⊗ Q/Z = 0. To see this, take a pure tensor
a ⊗ b ∈ I ⊗ Q/Z, and note that there exists an n ∈ Z such that nb = 0. If we
let x be such that nx = a, then we have

a⊗ b = nx⊗ b = x⊗ nb = x⊗ 0 = 0.

So it is impossible to get pure resolutions of injective objects in the category of
abelian groups, and hence we can also not expect to get them in the category
of sheaves over X. For this reason, we will work with pure acyclic and pure
injective resolutions.

Definition 2.20. An object I is called pure injective if for every map φ : A → I
and every pure monomorphism i : A → B there is an extension morphism
ψ : B → I such that φ = ψ ◦ i.
We say C0 with ⊗ has enough pure injectives if every object A can be embedded
purely in a pure injective J .
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Precisely in the same way as for injective resolutions, we can prove the following
results.

Proposition 2.21. If C0 has enough pure injectives, every object A admits a
pure injective resolution A → I•, understood as a pure resolution with the Ii
pure injective objects.

Theorem 2.22. Suppose φ : A → B is a morphism in C, and suppose i : A →
I• and j : B → J • are pure resolutions. If J • is pure injective, there exists a
chain morphism φ : I• → J • satisfying j ◦ φ = φ0 ◦ i. Moreover, φ is unique
up to chain homotopy.

So in the same way as for injective resolutions we see that if C0 has enough pure
injectives, any object A admits a pure injective resolution unique up to chain
homotopy equivalence.

Our goal now is to show the category of sheaves on a space X has enough
pure injectives. For this, we first turn to the category of abelian groups. Pure
subgroups have apparently been studied extensively in the literature: it is a
useful concept, intermediate between subgroup and direct summand. They
were first studied by Prüfer, a famous group theorist who worked early in the
twentieth century. For more information, see the introduction to chapter 5 in
[10].

There is a slight complication in that [10] and other authors in the field of
infinite abelian groups use a different definition. They say a subgroup H ⊂ G
is pure if the following holds: if the equation nx = y with y ∈ H has a solution
in G, then it has a solution in H. In the following proposition, we show this is
equivalent to our definition. We need a lemma from [11], which we specify to
the situation of abelian groups.

Lemma 2.23. Let M,N be modules over a commutative ring R, and suppose∑n
i=1 xi ⊗ yi = 0 in M ⊗ N with xi ∈ M , yi ∈ N . Then there are finitely

generated submodules M0 ⊂ M and N0 ⊂ N such that
∑n
i=1 xi ⊗ yi = 0 in

M0 ⊗N0.

Proof. See [11] corollary 2.13.

In the following proof, the implication 2. ⇒ 1. uses ideas from the proof of
proposition 2.19, iv) ⇒ iii), in [11].

Proposition 2.24. The following are equivalent for an inclusion H
f−→ G in

Ab.

1. For every abelian group A, the map H ⊗A f⊗id−−−→ G⊗A is injective.

2. For every finitely generated abelian group A, the map H ⊗A f⊗id−−−→ G⊗A
is injective.

3. For every finitely generated abelian torsion group A, the map H⊗A f⊗id−−−→
G⊗A is injective.

4. For every n, the map H ⊗ Z/nZ f⊗id−−−→ G⊗ Z/nZ is injective.
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5. If the equation nx = y with y ∈ H has a solution in G, then it has a
solution in H.

Proof. The implications 1. ⇒ 2. ⇒ 3. ⇒ 4. are trivial. Statement 4. says that
the induced map H/nH → G/nG is injective, i.e if y ∈ H maps to nG, then it
is contained in nH, which is precisely 5. We conclude 4. ⇐⇒ 5.

4.⇒ 3. A finitely generated torsion group is of the form

A =

k⊕
i=1

Z/niZ

by the structure theorem of finitely generated abelian groups, so the map H ⊗
A

f⊗id−−−→ G⊗A becomes

k⊕
i=1

H/niH →
k⊕
i=1

G/niG

with the induced map on the components. The component maps are injective
by 4. hence it is injective.

3.⇒ 2. We can write H as
A = Zr ⊕Ator

with Ator the torsion part of A by the structure theorem of finitely generated
abelian groups. Then the map H ⊗A f⊗id−−−→ G⊗A becomes

Hr ⊕ (H ⊗Ator)→ Gr ⊕ (G⊗Ator).

The map Hr → Gr is clearly injective and the map H ⊗ Ator → G ⊗ Ator is
injective by 3.

2.⇒ 1. Suppose
∑k
i=1 gi⊗ai ∈ ker f⊗id, i.e.

∑k
i=1 f(gi)⊗ai = 0. Let A′ be the

group generated by the ai. Then by lemma 2.23 there exists a finitely generated
subgroup A0 ⊂ A containing A′ such that

∑k
i=1 f(gi)⊗ ai = 0 considered as an

element of G ⊗ A0. Hence
∑k
i=1 gi ⊗ ai considered as an element of H ⊗ A0 is

in the kernel of H ⊗A0
f⊗id−−−→ G⊗A0. By 2. it follows that

∑k
i=1 gi ⊗ ai = 0 in

H ⊗A0, so it is also equal to zero in H ⊗A.

Now that we know we can use phrasing 5. from the previous proposition as a
definition, we can use the results from the literature. To understand them a
little, we will explain the concept of cocyclic group. We follow [10], section 1.3.

A cyclic group A can be characterised by considering morphisms into it: A
is cyclic if there exists an element a ∈ A such that a morphism φ : B → A
is surjective if and only if a ∈ im φ (take a any generator of A). We define
cocyclic groups by the dual concept: a group A is called cocyclic if there exists
an element a ∈ A such that a morphism φ : A → B is injective if and only if
a /∈ kerφ. This element a is sometimes called a cogenerator. As all subgroups in
A can be obtained as kernels of quotient maps, this means that a is contained
in all nonzero subgroups of A, which in turn implies A has a smallest nonzero
subgroup. If on the other hand A has a smallest nonzero subgroup, any element
in this smallest subgroup is a cogenerator.
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Example 2.25. Let p be a prime, and consider Z/pkZ. The only nonzero
subgroups are of the form 〈pj〉 ∼= Z/pk−jZ where 0 ≤ j ≤ k − 1, and they form
a chain:

〈pk−1〉 ⊂ 〈pk−2〉 ⊂ · · · ⊂ Z/pkZ

It follows that cyclic groups of prime power order are examples of cocyclic
groups. It is also immediately clear that cyclic groups of ordermn wherem,n >
1 and gcd(m,n) = 1 are not cocyclic, because the Chinese remainder theorem
yields an isomorphism

Z/mnZ ∼= Z/mZ⊕ Z/nZ,

so the subgroups Z/mZ⊕ 0 and 0⊕ Z/nZ have trivial intersection.

Example 2.26. Let p be a prime. Consider the so called Prüfer group denoted
by Z(p∞). It can be identified with the group of the pn-th roots of unity in
C, where n varies over N, or equivalently with Z[ 1p ]/Z, i. e. the subgroup of
of fractions in Q/Z with denominator a power of p. Within Z(p∞) the pk-th
roots of unity, where k is now fixed, form a subgroup of order pk isomorphic to
Z/pkZ. These are easily seen to be the only proper subgroups, so the complete
list of nonzero proper subgroups form a chain〈

1

p

〉
⊂
〈

1

p2

〉
⊂ · · ·

It follows that Z(p∞) is another example of a cocyclic group.

It turns out these are the only examples of cocyclic groups.

Theorem 2.27. If A is a cocyclic group, then A ∼= Z/pkZ or A ∼= Z(p∞).

Proof. If a is a cogenerator, then 〈a〉 cannot be infinite and equal to Z, since
Z has many proper subgroups. Hence it has to be finite and have prime order,
otherwise it also has proper subgroups. The rest of the proof consists of showing
that A can have at most one subgroup of order pn, and that this group must be
cyclic, from which the claim follows. See [10] theorem 3.1.

In [10], pure injectives are classified in terms of cocyclic groups. The proof uses
a quite a bit of theory of infinite abelian groups, so we won’t include it here.

Theorem 2.28. An abelian group is pure injective if and only if it is a direct
summand of a direct product of cocyclic groups.

Proof. See [10] theorem 30.4.

Theorem 2.29. Every abelian group can be purely embedded in a direct product
of cocyclic groups.

Proof. See [10] lemma 30.3.

Combining the last two theorems implies that Ab has enough pure injectives.

Theorem 2.30. The category of abelian groups Ab has enough pure injectives.
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Now we can turn to the category of sheaves on a space X. Since the question
of whether a morphism of sheaves is a monomorphism can be decided on stalks,
purity of a monomorphism can also be decided on stalks. Also purity can be
decided by looking at the corresponding morphisms on sections. To show this,
we first need the following lemma.

Lemma 2.31. We have (F ⊗ G)x ∼= Fx ⊗ Gx for all x ∈ X.

Proof. Since sheafification preserves stalks, we should compute the stalks of the
presheaf with sections F(U)⊗G(U). But since the functor F⊗− is a left adjoint
and thus commutes with direct limits, it follows that this presheaf has stalks
Fx ⊗ Gx.

Lemma 2.32. A monomorphism of sheaves F → G is pure if and only if
the monomorphism Fx → Gx is pure in Ab for all x ∈ X, if and only if the
monomorphism F(U)→ G(U) is pure in Ab for all U ⊂ X.

Proof. We prove the first equivalence; the proof of the second is similar.

Suppose F → G is pure. Let G be an arbitrary abelian group. Then

F ⊗GX → G ⊗GX

is a monomorphism, with GX the constant sheaf with values in G. Taking stalks
at x and applying 2.31 we see that Fx ⊗G → Gx ⊗G is injective, so Fx → Gx
is pure.

Suppose Fx → Gx is pure for all x. Let H be a sheaf and consider

F ⊗H → G ⊗H.

Taking stalks at x and applying 2.31 we get Fx ⊗ Hx → Gx ⊗ Hx, which is
injective by purity of Fx → Gx. Hence F ⊗H → G⊗H is a monomorphism and
F → G is pure.

With these tools in hand, we can start constructing a pure embedding into a
pure injective sheaf for every sheaf F . We use the same strategy as before when
constructing an embedding into an injective sheaf: we embed F into FGod and
then embed FGod into the sheaf I given by

I(U) =
∏
x∈U
Ix

where Ix is a pure injective group purely containing Fx. By the same argument
as in 2.12, I is pure injective.

Proposition 2.33. The canonical embedding i : F → FGod is pure.

Proof. We show F → FGod induces a map of the form 2.19 into a direct sum-
mand on stalks, from which the result follows by 2.19 and 2.32.

Let x ∈ X and consider the injection ix : Fx → (FGod)x. Let π :
∏
x∈X Fx → Fx

be the projection map onto Fx. Since FGod is flasque, the map FGod(X) →
(FGod)x is surjective for all x ∈ X. To see this, note that every σx ∈ (FGod)x
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is represented by some σ ∈ FGod(U) with x ∈ U , and the map FGod(X) →
(FGod)x factorises as FGod(X)→ FGod(U)→ (FGod)x. So the diagram

FGod(X)
∏
x∈X Fx

(FGod)x Fx

=

π

q

(9)

defines a surjection q : (FGod)x → Fx. It is well defined, since if two sections
σ and τ in FGod(X) represent f ∈ (FGod)x, then they agree on some open
neighbourhood of x and we must have π(σ) = π(τ). It is surjective because π
is. Also, if σ ∈ F(U) represents σx ∈ Fx, then π ◦ i(σ) = σx, so q ◦ ix(σx) = σx.
So q defines a retraction and ix is split.

Definition 2.34. Let F be a sheaf on X. The canonical Godement resolution is
obtained by first taking the injection F → FGod of lemma 2.11, then embedding
FGod/F into (FGod/F)God to obtain an exact sequence 0 → F → FGod →
(FGod/F)God. We continue like this indefinitely to get a resolution. By 2.33
this is a pure acyclic resolution.

The last thing to show is that FGod → I is pure. For this it is useful that by
2.24, purity of a morphism of abelian groups can be decided by tensoring with
Z/nZ. This is an example of a group of finite presentation, which are groups A
fitting in an exact sequence

Zm → Zk → A→ 0.

So these are finitely generated groups for which there exists a presentation of
which the kernel is also finitely generated. Obviously for Z/nZ we have the
exact sequence

0→ Z ·n−→ Z→ Z/nZ→ 0.

Let {Ai}i∈I be a family of abelian groups and let B be an abelian group. There
is a canonical morphism

(
∏
i∈I

Ai)⊗B →
∏
i∈I

(Ai ⊗B)

given by (ai)i∈I ⊗ b → (ai ⊗ b)i∈I . In general this fails to be an isomorphism,
but we have the following.

Proposition 2.35. If B is of finite presentation, the canonical map

(
∏
i∈I

Ai)⊗B →
∏
i∈I

(Ai ⊗B)

is an isomorphism.

Proof. See [12].
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From this we conclude:

Corollary 2.36. If Ai → Bi is pure for i ∈ I, then
∏
i∈I Ai →

∏
i∈I Bi is pure.

Proof. We only have to tensor with Z/nZ to check this by 2.24, and in this
case the tensor product distributes over the direct product by the previous
proposition. We conclude by purity of the maps Ai → Bi.

Proposition 2.37. The morphism FGod → I is pure.

Proof. For U ⊂ X the morphism FGod(U) → I(U) is a product of pure
monomorphisms: ∏

x∈U
Fx →

∏
x∈U

Ix.

By the previous corollary this is a pure monomorphism and we conclude by
2.32.

Combining all of this we see:

Theorem 2.38. The category of sheaves on X has enough pure injectives.

Of course all this work would be futile if pure injective resolutions didn’t com-
pute the cohomology of a sheaf F . Fortunately we have the following.

Proposition 2.39. Pure injectives are flasque.

Proof. We follow the proof in [6], which proves that injectives are flasque, but
the same proof shows pure injectives are flasque. Note that to prove that a pure
injective I is flasque, we only have to show the restriction maps F(X)→ F(U)
are surjective for U ⊂ X.

So suppose I is pure injective, and let U ⊂ X. Define ZX,U (V ) to be ZX(V )
when V ⊂ U and 0 otherwise. Then we have a natural exact sequence

0→ ZX,U → ZX .

This is in fact a pure exact sequence, since on sections it is the identity if V ⊂ U
and 0 otherwise.

Note that a morphism f : ZX → I is determined by picking an image f(1) ∈
I(X) (one can see this by using that the constant sheaf is the sheafification
of the constant preseheaf), and in the same way a morphism g : ZX,U → I
is determined by picking an image g(1) ∈ I(U). So let g : ZX,U → I be the
morphism given by g(1) = σ ∈ I(U). Let f be the morphism that makes the
diagram

ZX,U ZX

I

g
f

(10)
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commute, which exists by the pure injective property of I. Then it follows that
ρX,U (f(1)) = g(1) = σ, so ρX,U is surjective.

We are now in a position to construct the cup product. Let F and G are sheaves
on X. Let F → A• and G → B• be pure acyclic resolutions. Let F ⊗ G → K•
be a pure injective resolution. Then we get a complex

F ⊗ G → (A⊗ B)•Tot,

and by purity this is actually a resolution: by 2.17 (A⊗B)•Tot is an exact complex
in degree n > 0, and by using purity twice we see that

F ⊗ G → F ⊗ B0 → A0 ⊗ B0

is a monomorphism, and that the complex is exact in degree 0. It is in fact
a pure resolution, by associativity of the tensor product and the fact that it
distributes over direct sums. Hence we get a chain morphism

(A⊗ B)•Tot → K•

extending the identity on F ⊗ G, which is unique up to chain homotopy. Note
that the tensor product Ak ⊗ Bl is obtained by taking the sheafification of the
presheaf with sections Ak(U)⊗ Bl(U). So there is a canonical map

Γ(Ak)⊗ Γ(Bl)→ Γ(Ak ⊗ Bl).

Finally we get maps
Γ(Ak)⊗ Γ(Bl)→ Γ(Kk+l),

since taking global sections commutes with taking finite direct sums. Taking
cohomology we get maps

Hk(X,F)⊗Hl(X,G)→ Hk+l(X,F ⊗ G),

which we call the cup product.

Lemma 2.40. Suppose we have acyclic resolutions F → A• and F → B• and a
chain map f : A• → B• extending the identity. Then f induces an isomorphism
on cohomology.

Proof. Choose an injective resolution I of F . By 2.10, chain maps i : A• →
I• and j : B• → I• extending the identity on F induce isomorphisms on
cohomology. Choose such maps and consider the diagram

A•

B• I•

f
i

j

(11)

Since i and j ◦f both extend A• to I•, this diagram commutes up to homotopy.
Hence f induces an isomorphism on cohomology.
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Proposition 2.41. The cup product does not depend on the choice of pure
acyclic resolutions of F and G, nor on the choice of pure injective resolution of
F ⊗ G.

Proof. Choose pure acyclic resolutions F → A•, F → A′•, G → B•, G → B′•,
and take pure injective resolutions (F⊗G)→ K•, (F⊗G)→ K′•. Choose chain
maps i : A• → I• and j : B → J • to pure injective resolutions I• and J • of F
and G, extending the identities on F and G. Consider the diagram

(A⊗ B)•Tot K•

(I ⊗ J )•Tot

(A′ ⊗ B′)•Tot K′•

i⊗ j

i′ ⊗ j′

(12)

Note that the maps i⊗ j and i′⊗ j′ are a priori maps on presheaves, but by the
universal property of sheafification, they also induce maps on the corresponding
sheaves. The maps (I ⊗J )•Tot to K•, K′• are the up to homotopy unique chain
maps existing since (I ⊗ J )•Tot is a pure resolution. For the same reason, we
have maps (A⊗ B)•Tot → K• and (A′ ⊗ B′)•Tot → K′•. The diagram

(A⊗ B)•Tot K•

(I ⊗ J )•Tot K′•

i⊗ j

(13)

commutes up to homotopy since all directions extend (A⊗B)•Tot toK′•. Consider
the diagram

(I ⊗ J )•Tot K•

(A′ ⊗ B′)•Tot K′•

i′ ⊗ j′

(14)

The lower triangle commutes up to homotopy since both directions extend (A′⊗
B′)•Tot to K′•, while the upper triangle commutes up to homotopy since both
directions extend (I ⊗ J )•Tot to K′• . So the whole diagram commutes up to
homotopy.

We conclude that the whole diagram 12 commutes up to homotopy. Taking
global sections, we get the commutative diagram
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Γ(Ak)⊗ Γ(Bl) Γ(Ak ⊗ Bl) Γ(Kk+l)

Γ(Ik)⊗ Γ(J l) Γ(Ik ⊗ J l)

Γ(A′k)⊗ Γ(B′l) Γ(A′k ⊗ B′l) Γ(K′k+l)

i⊗ j i⊗ j

i′ ⊗ j′ i′ ⊗ j′

(15)

Since by lemma 2.40 the morphisms i, i′, j, j′ induce natural isomorphisms on
cohomology, finally we conclude, taking cohomology, that

Hk(Γ(A•))⊗Hl(Γ(B•)) Hk+l(Γ(K•))

Hk(Γ(A′•))⊗Hl(Γ(B′•)) Hk+l(Γ(K′•))

∼ ∼

(16)

commutes.

2.3 Čech Cohomology

In this section we introduce Čech cohomology, a computational tool for sheaf
cohomology. We introduce the Čech resolution, which is much easier to handle
than the other resolutions computing cohomology given so far, and show that
under certain conditions, it computes sheaf cohomology. We also show, in a way
that avoids using spectral sequences like [8] does, under these conditions there
is a natural isomorphism between Čech and sheaf cohomology that respects the
cup product. We follow [2] section 4.1.3 for the definitions.

Let F be a sheaf on X and {Ui}i∈T a finite open covering; T is given a well-
ordering. For a set I ⊂ T define

UI =
⋂
i∈I

Ui.

Define for each set I ⊂ T the sheaf FI on X by

FI(U) = F(U ∩ UI).

which is the extension by 0 of the restriction of F to UI . Then we define sheaves
Fk by

Fk(U) =
⊕
|I|=k+1

FI(U).
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For a subset I ⊂ T , I = {i0, · · · , ik} (where i0 < i1 < · · · < ik), let Is = I\{is}.
Let σ = (σI)I ∈ Fk(U), where I ranges over subsets I ⊂ T of cardinality k + 1
and σI ∈ F(U ∩ UI). We define boundary maps d : Fk → Fk+1 by

(dσ)J =

k+1∑
s=0

(−1)sσJs |U∩UJ
,

where J ranges over the subsets J ⊂ T of cardinality k+ 2. Also define j : F →
F0 by

dσ = (σ|U∩Ui)i∈N

for σ ∈ F(U). It is easy to show this turns j : F → F• into a complex.

Proposition 2.42. The complex j : F → F• is in fact a pure resolution of F .

Proof. The fact that j : F → F• is a resolution is well known, see [2] proposition
4.17.

We prove purity. Note that we have

(Fk)x =
⊕

|I|=k+1, x∈UI

Fx

since taking stalks commutes with direct sums. Hence the map j induces

Fx →
⊕
x∈UI

Fx

given by the identity on each component, which is clearly a split monomorphism.
For k ≥ 1 consider

(Fk−1)x
dx−→ (Fk)x

dx−→ (Fk+1)x.

We tensor with a group G to get⊕
|I|=k, x∈UI

Fx ⊗G
dx⊗id−−−−→

⊕
|J|=k+1, x∈UJ

Fx ⊗G
dx⊗id−−−−→

⊕
|K|=k+2, x∈UK

Fx ⊗G.

Note that since d is an alternating sum, we have in fact (dx ⊗ id)(a ⊗ b) =
(dx(a)⊗ b) = dx(a⊗ b), where the last dx is the morphism induced on stalks by
the boundary morphism of the Čech complex with values in the constant sheaf
Fx ⊗G. We know this is exact since this complex is a resolution, so by 2.32 we
are done.

We call the above resolution the Čech resolution of F .
By applying the global sections functor to F•, we get a complex Γ(F•) given
by

Γ(Fk) =
⊕
|I|=k+1

F(UI).

The Čech cohomology groups Ȟk(X,F) of F with respect to the covering {Ui}i∈T
are defined to be the cohomology groups of this complex.
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Given an injective resolution F → I•, by 2.5 the identity on F induces a chain
map i : F• → I•, unique up to chain homotopy. This defines a canonical map

i∗ : Ȟk(X,F)→ Hk(X,F)

for all k. It is an important theorem that i∗ is an isomorphism under some
conditions on the open cover {Ui}i∈N.

Theorem 2.43. Suppose F is a sheaf on X. Suppose {Ui}i∈T form an open
cover of X such that

Hk(UI ,F|UI
) = 0

for k > 0 and all I (we say {Ui}i∈N is a good open cover with respect to F).
Then the canonical map i∗ is an isomorphism:

i∗ : Ȟk(X,F)
∼−→ Hk(X,F)

Proof. See [6] for a proof avoiding spectral sequences.

2.4 Cup product in Čech cohomology

Let F and G be sheaves on X. Let {Ui} be a good open cover of X with respect
to F , G and F ⊗ G. Let F•, G• and (F ⊗ G)• be the Čech resolutions of the
sheaves F ,G,F ⊗ G. Consider the morphism

^: Fk(U)⊗ Gl(U)→ (F ⊗ G)k+l(U)

where if K = {i0, · · · ik+l} and I = {i0, · · · , ik}, J = {ik, · · · , ik+l} then

^ (σ ⊗ τ)K = σI ⊗ τJ .

We have the following identity, reminiscent of the one in singular cohomology.

Lemma 2.44. We have d ^ (σ ⊗ τ) =^ (dσ ⊗ τ) + (−1)k ^ (σ ⊗ dτ) for
σ ⊗ τ ∈ Fk(U)⊗ Gl(U).

Proof. We have

^ (dσ ⊗ τ)K =

k+1∑
s=0

(−1)sσi0,··· ,îs,··· ,ik+1
|i0,··· ,ik+1

⊗ τik+1,··· ,ik+l+1

and

(−1)k ^ (σ ⊗ dτ)K =

k+l+1∑
s=k

(−1)sσi0,··· ,ik ⊗ τik,··· ,îs,··· ,ik+l+1
|ik,··· ,ik+l+1

whereK = {i0, · · · , ik+l+1}. When adding these expressions the last term of the
first sum cancels the first term of the last, and we’re left with d ^ (σ ⊗ τ).
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From this it follows that we get a cup product on Čech cohomology. Moreover,
note that by the universal property of sheafification ^ induces maps of sheaves
Fk ⊗ Gl ^−→ (F ⊗ G)k+l. By the universal property of direct sums we get maps
(F ⊗ G)k+lTot

^−→ (F ⊗ G)k+l. The lemma now implies that the diagrams

(F ⊗ G)k+lTot (F ⊗ G)k+l+1
Tot

(F ⊗ G)k+l (F ⊗ G)k+l+1

d

^ ^

d

(17)

commute, since sheafification preserves commutative diagram (it is a functor).
This means precisely that the collection of these maps yields a chain map:

(F ⊗ G)•Tot
^−→ (F ⊗ G)•.

This chain map contains the information of all the cup product maps in Čech
cohomology.

We would like to be able to use Čech cohomology to compute cohomology rings,
and for this we want a natural isomorphism between Čech and sheaf cohomology
that respects the cup product. Let F → F• be the Čech resolution, and F → I•
be a pure injective resolution. Then by purity of the Čech resolution, there is
a chain map i : F• → I•, unique up to chain homotopy. This map is a natural
candidate.

Lemma 2.45. The map i induces an isomorphism on cohomology.

Proof. Choose an injective resolution J of F . Choose chain maps f : F• → J •
and g : I• → J •. Now f induces an isomorphism on cohomology by 2.43 and
I is flasque, so g also induces an isomorphism. Consider the diagram

F•

I• J •

i
f

g

. (18)

Since f and g ◦ i both extend F• to J •, i induces an isomorphism.

Theorem 2.46. The natural isomorphism

i∗ : Ȟk(X,F)
∼−→ Hk(X,F)

induced by the chain map i : F• → I• respects the cup product.

Proof. Let i : F• → I• and j : G• → J • be chain maps of the Čech resolutions
of F ,G to pure injective resolutions, extending the identity. Pick a chain map
from (F ⊗ G)• to a pure injective resolution K• (which is possible since it is
pure), and do the same for (I ⊗ J )•. Consider the diagram
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(F ⊗ G)•Tot (F ⊗ G)•

(I ⊗ J )•Tot K•

^

i⊗ j
^

(19)

Here the lower ^ is the up to homotopy unique chain map inducing the cup
product in sheaf cohomology.

As was discussed above, the upper^ is a chain map. It follows that all directions
in the diagram extend the pure resolution (F ⊗ G)•Tot to the pure injective
resolutionK•, so the diagram commutes up to homotopy. Taking global sections,
we obtain commutative diagrams

Γ(Fk)⊗ Γ(Gl) Γ(Fk ⊗ Gl) Γ((F ⊗ G)k+l)

Γ(Ik)⊗ Γ(J l) Γ(Ik ⊗ J l) Γ(Kk+l)

i⊗ j i⊗ j

^

p

(20)

As i and j and also the vertical map on the right induce natural isomorphisms
on cohomology by 2.45, passing to cohomology we get the commutative diagram

Ȟk(X,F)⊗ Ȟl(X,G) Ȟk+l(X,F ⊗ G)

Hk(X,F)⊗Hl(X,G) Hk+l(X,F ⊗ G)

∼

^

∼
p∗

(21)

as desired.

2.5 Some computations

In this section, we will do some explicit computations of cohomology rings us-
ing Čech cohomology. We will give an example of two spaces that have the
same cohomology groups, but a different cup product, whence they cannot be
homotopy equivalent.

We first compute the cohomology of the real projective plane X = RP 2, which
we will denote by P 2. We construct an open cover of S2. Choose an equator and
cover it by four open bands of the same size. Then cover the open hemisperes
perpendicular to this equator by two opens, in such a way that these opens don’t
meet. This yields a cover {Ui}i∈I with I = {0, 1, 2, 3, 4, 5}. This is a good cover
with respect to Z and Z/2Z of S2 in the sense of 2.43 since al intersections of
opens in this set are empty or contractible. Note that the Z/2Z = 〈ρ〉 action on
S2 permutes these opens in such a way that ρUi ∩Ui = ∅ for all i ∈ I, so taking
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the images of the opens in this cover under the covering map p yields a good
open cover {Vi}i∈I with respect to Z and Z/2Z of P 2, where now I = {0, 1, 2}:
while the non-empty intersections are not contractible, they consist of finitely
many contractible components.
We will compute the cohomology with coefficients in the constant sheaves ZX
and Z/2Z

X
There are 6 components in the twofold intersections in this open

cover which we call a, b, c, d, e, f and 4 different components in the threefold
intersection which we call S, T,R, U . The following diagram illustrates this:

1 2

0

2 1

f

T

e S

a d

eR

d

f

U c

If we take coefficients in ZX , complex of the global sections of the Čech complex
is

Z3 A−→ Z6 B−→ Z4 → 0,

with dual bases of the basis {0, 1, 2}, {a, b, c, d, e, f}, {S, T,R, U}. Writing out
the boundary maps, we see that with respect to these bases we have

A =


−1 1 0
−1 0 1
−1 1 0
−1 0 1
0 −1 1
0 −1 1


and

B =


1 0 0 −1 1 0
1 −1 0 0 0 1
0 −1 1 0 1 0
0 0 1 −1 0 1


As expected we have

Ȟ0(P 2, ZX) = kerA = 〈

1
1
1

〉 ∼= Z

Moreover we have

im A = 〈


1
0
1
0
−1
−1

 ,


0
1
0
1
1
1

〉 = kerB
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so Ȟ1(P 2,Z)X = 0.

Now consider the surjective homomorphism Z4 → Z/2Z given by

(xi)
4
i=0 7→

4∑
i=0

xi(mod2)

It is easily seen that im B (the subgroup generated by the columns of the matrix
B) is the kernel of this homomorphism. Hence by the isomorphism theorem we
conclude

Ȟ2(P 2,Z) = Z4/im B ∼= Z/2Z.

Because Ȟ1(P 2,Z) = 0, the cup product structure is not very interesting: it is
just multiplication within Z = Ȟ0(P 2,Z), and trivial on Z/2Z = Ȟ2(P 2,Z), i.e.

Ȟ∗(P 2,Z) ∼= Z[α]/(α2, 2α),

with α the generator of Ȟ2(P 2,Z).

For this reason we now take coefficients in Z/2Z, because in this case we get
a more interesting structure. The groups now become Z/2Z modules and the
morphisms Z/2Zmodule morphisms: the coefficients of the matrices lie in Z/2Z.
The exact same arguments as above apply to show that

Ȟ0(P 2,Z/2Z) ∼= Z/2Z, Ȟ2(P 2,Z/2Z) ∼= Z/2Z.

However, we have that in this case

im A = 〈


1
0
1
0
1
1

 ,


0
1
0
1
1
1

〉, kerB = 〈


1
1
1
1
0
0

 ,


1
1
0
0
1
0

 ,


0
1
1
0
0
1

〉.

Note that 
1
0
1
0
1
1

+


0
1
0
1
1
1

 =


1
1
1
1
0
0


and 

1
1
0
0
1
0

+


0
1
1
0
0
1

 =


1
0
1
0
1
1

 ,

so
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Ȟ1(Pn,Z/2Z) ∼= Z/2Z ∼= 〈


1
1
0
0
1
0

〉.

Taking the product of the generator with itself we get


1
1
0
0
1
0



2

=


1 · 1
1 · 0
0 · 1
0 · 0

 =


1
0
0
0


which is the generator of Ȟ2(Pn,Z/2Z). Hence the product is not trivial, and
we have

Ȟ∗(Pn,Z/2Z) ∼= (Z/2Z)[α]/(α3)

where α is the generator of Ȟ1(Pn,Z/2Z).

Now take X = S2 ∨ S1. Note that

Ȟ∗(S2 ∨ S1,Z/2Z) ∼= Ȟ∗(S2,Z/2Z)⊕ Ȟ∗(S1,Z/2Z)

which shows that the cup product structure is trivial, since it is trivial on
Ȟ∗(S2,Z/2Z) and Ȟ∗(S1,Z/2Z). This means that while S2 ∨ S1 and P 2 have
the same Z/2Z-cohomology groups, the cup product allows us to distinguish
them.
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3 Comparison sheaf cohomology and singular co-
homology

In this section, we follow [2] to compare singular cohomology with sheaf co-
homology, but we provide much more details. We also show this isomorphism
respects the cup product. We start with a definition of a property of topological
spaces that turns out to be crucial in the proof.

Definition 3.1. Let X be a topological space. An open cover {Ui}i∈I is called
locally finite if for every x ∈ X there is an open U containing x such that

#{i ∈ I : U ∩ Ui 6= ∅} <∞.

A topological space X is called paracompact if every open cover {Ui}i∈I has
a locally finite refinement. Finally, a topological space X is called hereditarily
paracompact if every open subset U ⊂ X is paracompact.

This condition admittedly looks a bit strange at first glance. However, the class
of hereditarily paracompact spaces contains the class of manifolds, since mani-
folds are paracompact and every open subset of a manifold is itself a manifold.

Theorem 3.2. Let X be a locally contractible, hereditarily paracompact space.
Then we have a natural isomorphism

Hk(X;Z)→ Hk(X,ZX)

with singular cohomology on the left hand side and sheaf cohomology on the right
hand side.

In [2] the paracompactness assumption is omitted. Then, however, there is a
problem in the proof which cannot be fixed. The theorem is true without the
paracompactness assumption, see [4], but a different and much more complicated
approach is needed. We give the proof for the theorem with the paracompact-
ness assumption, and comment on what goes wrong in the proof without this
assumption.

Consider the chain complex of presheaves given by the singular chain groups
Cksing(U ;Z) for U ⊂ X. Since Cksing(U ;Z) consists of functions from n-simplices
to Z, it is a flasque presheaf. Let Ck denote the sheafification of Cksing.

We construct the isomorphism as follows. We first show C• is a resolution
of ZX . Then we show it is in fact a flasque resolution, so it computes the
sheaf cohomology of ZX . Finally we show the sheafification map induces an
isomorphism on cohomology.

Proposition 3.3. The complex ZX → C• is a resolution.

Proof. For x ∈ X and k ≥ 1, consider the sequence

(Ck−1sing )x
∂k−1
x−−−→ (Cksing)x

∂k
x−→ (Ck+1

sing )x.

Since the Ck form a complex, ∂2x = 0. Suppose σx ∈ ker ∂kx . Then since x has
a basis of neighbourhoods consisting of contractible spaces, we can represent
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σx by σ ∈ Cksing(U) with U contractible. Since contractible spaces have trivial
singular cohomology in dimension k > 0, the sequence

(Ck−1sing )(U)
∂k−1

−−−→ (Cksing)(U)
∂k

−→ (Ck+1
sing )(U)

is exact. By replacing U with a smaller contractible open containing x if nec-
essary, we can assume ∂kσ = 0, so σ ∈ im ∂k−1. Taking stalks, we see that
σx ∈ im ∂k−1, hence the sequence of stalks is exact. Since sheafification pre-
serves stalks, we conclude that the complex C• is exact at Ck for k ≥ 1.

It remains to show that 0 → ZX
j−→ C0 ∂−→ C1 is exact. We proceed like in

the previous case: we show that 0 → ZX(U)
j−→ C0

sing(U)
∂−→ C1

sing(U) is exact
for U contractible, we conclude that the sequence is exact at stalks, hence the
conclusion follows for the sequence of sheaves.

So it remains to show that

0→ ZX(U)
j−→ C0

sing(U)
∂−→ C1

sing(U)

is exact for U contractible. It is clear that j is injective: it is the map which
embeds constant functions on U (since U is contractible) in the space of arbitrary
functions U → Z. Clearly constant maps map to 0 under ∂, so ∂◦j = 0. Suppose
moreover that for σ ∈ C0

sing(U) we have ∂σ = 0. Since U is contractible and
thus path connected, there exists a path between every two points x0, x1 ∈ U ,
i.e. there exists a 1-simplex ∆ with boundary points x0, x1. So if ∂(σ) = 0
then ∂(σ)(∆) = 0, hence σ(x0) = σ(x1). This shows that σ is constant and we
conclude σ ∈ im j.

To show ZX → C• is a flasque resolution, we need the following lemma. Note
that a presheaf F is a sheaf if and only if it satisfies the following axioms:

• (Unicity) Let U ⊂ X be an open with an open covering {Ui}i∈I . Let
σ ∈ F(U). Then σ|Ui

= 0 for all i ∈ I implies σ = 0.

• (Glueing) Let U ⊂ X be an open with an open covering {Ui}i∈I . Suppose
there are sections σi ∈ F(Ui) such that for all i, j ∈ I we have σi|Ui∩Uj =
σj |Ui∩Uj

. Then there exists σ ∈ F(U) such that σ|Ui
= σi for each i.

Lemma 3.4. Suppose X is hereditarily paracompact and suppose F is a presheaf
on X which satisfies the glueing axiom. Then the maps

F(U)→ F+(U)

induced by sheafification are surjective.

Proof. See [3] proposition 1.13.

Remark 3.5. The assumption that X is hereditarily paracompact (or some
other assumption) is necessary here: see [4] or [5] for counterexamples when
this assumption is omitted.
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In [3], theorem 3.2 is stated without the paracompactness assumption, but in
the proof lemma 3.4 is used; maybe this is the source of the confusion in [2].

We continue with the proof. Denote by Cksing(U)0 the set of cochains that
restricted to some open cover are 0, i.e.

Cksing(U)0 = {φ ∈ Cksing(U)|∃ open cover U with φ|V = 0 for all V ∈ U}.

This is the kernel of the map Cksing(U) → Ck(U) induced by sheafification. So
by 3.4 we have the following corollary.

Corollary 3.6. We have natural isomorphisms

Cksing(U)/Cksing(U)0 ∼= Ck(U).

From this it follows immediately that Ck is flasque as the quotient of a flasque
presheaf. So ZX → C• computes the cohomology of ZX . The only thing left to
show is that the map

Cksing(X)→ Cksing(X)/Cksing(X)0

induces an isomorphism on cohomology.

Let U be an open covering of X. Define CUk (X) to be the subgroup generated
by k-simplices σ in X with image contained in some V ∈ U . Then proposition
2.21 in [1] says that the map

i : CUk (X)→ Ck(X)

induced by the inclusion is a chain homotopy equivalence. The proof uses the
technique of barycentric subdivision. Hence the dual map

i∗ : Cksing(X)→ (CUsing)k(X)

is also a chain homotopy equivalence. To see this, take duals in the relation

iρ− id = ∂P − P∂

with the map ρ of 2.21, [1], to obtain

ρ∗i∗ − id = ∂∗P ∗ − P ∗∂∗

so P ∗ is a chain homotopy between ρ∗i∗ and id. In the same way i∗ρ∗ is chain
homotopic to id.

The kernel of i∗ is exactly (CUsing)k(X)0, the set of cochains that restricted to U
are 0. Taking cohomology in the sequence

(CUsing)k(X)0 → Cksing(X)→ (CUsing)k(X)

yields Hk((CUsing)(X)0) = 0 for all k.

Note that {(CUsing)k(X)0}U is a directed system partially ordered by inclusion
(there is an inclusion (CUsing)k(X)0 → (CVsing)k(X)0 if V is a refinement of U). It
follows that the direct limit of this system is equal to the union of the system,
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which is equal to Cksing(X)0. Since (co)homology commutes with taking direct
limits, we conclude

Hk((Csing)(X)0) = 0.

for all k. Now taking the long exact sequence of singular cohomology associated
to the short exact sequence of complexes

0→ (Csing)k(X)0 → Cksing(X)→ Cksing(X)/Cksing(X)0 → 0

shows that the quotient map induces an isomorphism on cohomology, which
concludes the proof.

Remark 3.7. Note that we could have used any abelian value group G instead
of Z and the same proof would have worked.

We turn to the cup product. Let A be an abelian group. Let Csing(A)• be
the complex of presheaves with sections the singular cochains, and C(A)• the
associated complex of sheaves, where we take values in A. To prove the natural
isomorphism between sheaf cohomology and singular cohomology respects the
cup product, we take the same approach as with Čech cohomology: we prove
that AX → C(A)• is a pure resolution, after which we deduce the desired
compatibility in more or less the same way.

Proposition 3.8. The resolution AX → C(A)• is pure.

Proof. The group Cksing(U ;A) consists of maps of the free abelian group Ck(U)
generated by the k-simplices in X into A. Since giving a homomorphism from a
free abelian group into another group is equivalent to giving images on a basis,
we can interpret it as a product

Cksing(U ;A) ∼=
∏
σ

A

where σ ranges over the k-simplices in U Tensoring with a group B of finite
presentation now gives isomorphisms

Cksing(U ;A)⊗B ∼= (
∏
σ

A)⊗B ∼=
∏
σ

(A⊗B) ∼= Cksing(U ;A⊗B)

where the middle isomorphism is due to 2.35. This isomorphism respects bound-
ary maps and restrictions, so we get a chain isomorphism between (Csing(A)⊗
B)• and AX ⊗ B → Csing(A ⊗ B)•. Arguing like in the previous section, the
second complex is exact on contractibles, so under our assumptions it is exact
at stalks. So the same holds for the first complex, from which it follows that the
complex of stalks associated to the complex Csing(A)• is pure. But this is also
the complex of stalks associated to the complex C(A)•. Hence C(A)• is itself
pure by 2.32.

Also the embedding AX → C0(A) is pure: on presheaves, for U contractible it
is the embedding

A→
∏
x∈U

A

given by
∏
x∈U id which is clearly split. Again, it is pure at stalks, from which

our claim follows.

34



We need the following lemma to show the cup product on presheaves induces a
map on the corresponding sheaves.

Lemma 3.9. The sheafification of the presheaf with sections Cksing(U ;A) ⊗
Clsing(U ;B) is Ck(A)⊗ Cl(B).

Proof. We use the description of sheafification in terms of compatible stalks,
namely: the sheafification of a presheaf F is given by the sheaf F# with sections

F#(U) = {(su) ∈
∏
u∈U
Fx such that *}

where * is the following property: for every u ∈ U there exists an open V with
u ∈ V ⊂ U and a section σ ∈ F(V ) such that σu = su, with σu the image of σ
in Fu. See also [13].

Since sheafification preserves stalks and taking stalks commutes with tensor
products, the description this gives for (Ck(A)⊗ Cl(B))(U) is the subset of∏

x∈U
(Cksing)x ⊗ (Clsing)x

such that for every u ∈ U there exists an open V with u ∈ V ⊂ U and a section
σ ∈ Ck(U ;A) ⊗ Cl(U ;B) such that σu = su. But sections in Ck(U ;A) and
Cl(U ;B) are locally equal determined by the presheaves Cksing(A) and Clsing(B),
so this is the same as requiring that for every u ∈ U there exists an open
V with u ∈ V ⊂ U and a section σ ∈ Cksing(U ;A) ⊗ Clsing(U ;B) such that
σu = su. This is the description of the sheafification of the presheaf with
sections Cksing(U ;A)⊗ Clsing(U ;B).

Let A and B be abelian groups. Note that the maps on singular cohomology

^: Cksing(U ;A)⊗ Clsing(U ;B) −→ Ck+lsing(U ;A⊗B)

which induce the cup product, by the universal property of sheafification and
lemma 3.9 induce maps of sheaves

^: Ck(A)⊗ Cl(B)→ Ck+l(A⊗B)

and the cup product is completely determined by these maps. By the universal
property of direct sums we obtain maps (C(A)⊗C(B))k+lTot → Ck+l(A⊗B) and
the same way as in Čech cohomology, lemma 1.4 implies that these form a chain
map

(C(A)⊗ C(B))•Tot
^−→ C(A⊗B)•,

which contains the information of all the cup product maps in singular coho-
mology.

By the argument in lemma 2.45 the up to homotopy equivalence unique chain
maps iA : C(A)• → I•A and iB : C(B)• → I•B to pure injective resolutions of
AX and BX induce natural isomorphisms on cohomology. Let K• be a pure
injective resolution of AX ⊗ BX , which by the proof of lemma 3.9 is equal to
(A⊗B)X . The diagram
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(C(A)⊗ C(B))•Tot C(A⊗B)•

(IA ⊗ IB)•Tot K•

^

iA ⊗ iB
^

(22)

where the arrows are the canonical ones, commutes since all directions extend
the pure resolution (C(A)⊗C(B))•Tot to the pure injective resolution K•. Since
the vertical maps induce natural isomorphisms on cohomology, the horizontal
maps induce the cup product on respectively Čech and sheaf cohomology, and
the sheafification map Cksing(A)→ Ck(A) induces an isomorphism on cohomol-
ogy, we conclude that the diagrams

Hk(X;A)⊗Hl(X;B) Hk+l(X;A⊗B)

Hk(X,AX)⊗Hl(X,BX) Hk+l(X, (A⊗B)X)

^

∼ ∼

^

(23)

commute.

36



References

[1] A. Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[2] C. Voisin. Hodge Theory and Complex Algebraic Geometry I. Cambridge
University Press, 2001.

[3] S. Ramanan. Global Calculus. American Mathematical Society, 2005.

[4] Y. Sella. Comparison of sheaf cohomology and singular cohomology, version
3. Submitted to arXiv.org on 22 Feb 2016 (v1), last revised 24 Mar 2016
(this version, v3).

[5] https://math.stackexchange.com/questions/1794725/
detail-in-the-proof-that-sheaf-cohomology-singular-cohomology
consulted 17/06/2018

[6] https://wiki.epfl.ch/kaehler2013/documents/Notes/Notes%202%
20Sheaves%20and%20Cohomology.pdf consulted 11/06/2018

[7] https://en.wikipedia.org/wiki/Abelian_category, consulted
11/06/2018

[8] Richard D. Swan. Cup products in sheaf cohomology, pure injectives, and a
substitute for projective resolutions. Journal of Pure and Applied Algebra
144, 1999.

[9] R. Hartshorne. Algebraic Geometry. Springer-Verlag New York, 1977.

[10] Lazlo Fuchs. Infinite Abelian Groups. Academic Press, 1970.

[11] M. F. Atiyah, I.G. MacDonald. Introduction to Commutative Algebra.
CRC Press, 1994.

[12] https://math.stackexchange.com/questions/1916457/
direct-product-commutes-with-tensor-product consulted
16/06/2018.

[13] https://stacks.math.columbia.edu/tag/007X consulted 16/06/2018

[14] http://www-users.math.umn.edu/~garrett/m/algebra/cech.pdf con-
sulted 17/06/2018

37

https://math.stackexchange.com/questions/1794725/detail-in-the-proof-that-sheaf-cohomology-singular-cohomology
https://math.stackexchange.com/questions/1794725/detail-in-the-proof-that-sheaf-cohomology-singular-cohomology
https://wiki.epfl.ch/kaehler2013/documents/Notes/Notes%202%20Sheaves%20and%20Cohomology.pdf
https://wiki.epfl.ch/kaehler2013/documents/Notes/Notes%202%20Sheaves%20and%20Cohomology.pdf
https://en.wikipedia.org/wiki/Abelian_category
https://math.stackexchange.com/questions/1916457/direct-product-commutes-with-tensor-product
https://math.stackexchange.com/questions/1916457/direct-product-commutes-with-tensor-product
https://stacks.math.columbia.edu/tag/007X
http://www-users.math.umn.edu/~garrett/m/algebra/cech.pdf

	Singular cohomology
	Definitions
	Cup product in singular cohomology
	Proof of Borsuk-Ulam

	Sheaf Cohomology
	Definitions
	Cup product in sheaf cohomology
	Cech Cohomology
	Cup product in Cech cohomology
	Some computations

	Comparison sheaf cohomology and singular cohomology

