Home          Accueil          Curriculum Vitae          Publications          Teaching          Fundings


Jean-Francois Aujol's main Publications


Optimization          Inverse Problems          Mathematical Imaging Sciences          Image processing


 

Optimization

 

  1. Parameter-Free FISTA by Adaptive Restart and Backtracking,
    J-F. Aujol, L. Calatroni, C. Dossal, H. Labarriere, and A. Rondepierre, SIAM Journal on Optimization, 2024.
  2. FISTA is an automatic geometrically optimized algorithm for strongly convex functions,
    J-F. Aujol, C. Dossal, and A. Rondepierre, Mathematical Programming, volume 204, issue 1-2, 2024.
  3. Fast convergence of inertial dynamics with Hessian-driven damping under geometry assumptions,
    J-F. Aujol, C. Dossal, Van Hao Hoang, H. Labarriere, and A. Rondepierre, Applied Mathematics and Optimization, volume 88, issue 3, 2023
  4. Convergence rates of the Heavy-Ball method for quasi-strongly convex optimization,
    J-F. Aujol, C. Dossal, and A. Rondepierre, SIAM Journal on Optimization, volume 32, issue 3, 2022.
  5. Convergence rates of the Heavy-Ball method with Lojasiewicz property,
    J-F. Aujol, C. Dossal, and A. Rondepierre, Mathematical Programming, pages 1-60, 2022.
  6. Convergence rates of an inertial gradient descent algorithm under growth and flatness conditions,
    V. Apidopoulos, J-F. Aujol, C. Dossal, and A. Rondepierre, Mathematical Programming, pages 1-43, 2020.
  7. Optimal convergence rates for Nesterov acceleration,
    J-F. Aujol, C. Dossal, and A. Rondepierre, SIAM Journal on Optimization, volume 29, number 4, pages 3131-3153, 2019.
  8. Convergence rate of inertial Forward-Backward algorithm beyond Nesterov's rule ,
    V. Apidopoulos, J-F. Aujol, and C. Dossal, Mathematical Programming, 2018.
  9. The differential inclusion modeling the FISTA algorithm and optimality of convergence rate in the case b<=3,
    V. Apidopoulos, J-F Aujol and C. Dossal, SIAM Journal on Optimization, volume 28, number 1, pages 551-574, 2018.
  10. Stability of over-relaxations for the Forward-Backward algorithm, Application to FISTA,
    J-F. Aujol and C. Dossal, SIAM Journal on Optimization, volume 25, number 4, pages 2408-2433, 2015.
  11. Some first-order algorithms for total variation based image restoration
    Jean-Francois Aujol, Journal of Mathematical Imaging and Vision, volume 34, number 3, pages 307-327, July 2009.

 

Inverse Problems

 

  1. Estimation of off-the-grid sparse spikes with over-parametrized projected gradient descent: theory and application,
    P-J. Bénard, Y. Traonmilin, J-F. Aujol, and E. Soubies, Inverse Problems, volume 40, number 5, 2024 .
  2. Sketched over-parametrized projected gradient descent for sparse spike estimation,
    P-J. Bénard, Y. Traonmilin, and J-F. Aujol, IEEE Signal Processing Letters, 2024.
  3. Minimizing Quotient Regularization Model,
    C. Wang, J-F. Aujol, G. Gilboa, and Y. Lou, Inverse Problems and Imaging, 2024.
  4. On strong basins of attractions for non-convex sparse spike estimation: upper and lower bounds,
    Y. Traonmilin, J-F. Aujol, P-J. Bénard, and A. Leclaire, Journal of Mathematical Imaging and Vision, volume 66, issue1, 2023.
  5. The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension,
    Y. Traonmilin, J-F. Aujol, and A. Leclaire, Information and Inference, volume 12, issue 1, 2023.
  6. Image super-resolution with PCA Reduced generalized Gaussian mixture models,
    L. Nguyen, J. Hertrich, J-F. Aujol, Y. Berthoumieu, Inverse Problems and Imaging, volume 17, number 6, pp. 1165-1192, 2023.
  7. PCA Reduced Gaussian Mixture Models with Applications in Superresolution,
    J. Hertrich, L. Nguyen, J-F. Aujol, D. Bernard, Y. Berthoumieu, A. Saadaldin and G. Steidl, Inverse Problems and Imaging, volume 16, number 2, 2022.
  8. Projected Gradient Descent for Non-Convex Sparse Spike Estimation,
    Y. Traonmilin, J.-F. Aujol, and A. Leclaire, IEEE Signal Processing Letters, volume 27, 2020.
  9. The basins of attraction of the global minimizers of the non-convex sparse spike estimation problem,
    Y. Traonmilin and J-F. Aujol, Inverse Problems, volume 36, number 4, 2020.
  10. Some proximal methods for Poisson intensity CBCT and PET
    S. Antoine, J-F. Aujol, Y. Boursier and C. Melot, Inverse Problems and Imaging, volume 6, number 4, 2012.

 

Mathematical Imaging Sciences

 

  1. Batch-less stochastic gradient descent for compressive learning of deep regularization for image denoising,
    H. Shi, Y. Traonmilin, and J-F. Aujol, Journal of Mathematical Imaging and Vision, 2024.
  2. Compressive learning for patch-based image denoising,
    H. Shi, Y. Traonmilin, and J-F. Aujol, SIAM Journal on Imaging Sciences, volume 15, issue 3, 2022.
  3. Recent Approaches for Image Colorization,
    F. Pierre and J-F. Aujol, in Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, 2021.
  4. Rayleigh quotient minimization for absolutely one-homogeneous functionals ,
    T. Feld, J-F. Aujol, G. Gilboa, and N. Papadakis, Inverse Problems, volume 35, number 6, 2019.
  5. Theoretical Analysis of Flows Estimating Eigenfunctions of One-homogeneous Functionals,
    J-F. Aujol, G. Gilboa, and N. Papadakis, SIAM Journal on Imaging Sciences, volume 11, number 2, pages 1416-1440, 2018.
  6. Variational Methods for Normal Integration,
    Y. Queau, J-D Durou and J-F Aujol, Journal of Mathematical Imaging and Vision, volume 60, issue 4, pages 609-632, 2018.
  7. Normal Integration: A Survey,
    Y. Queau, J-D Durou and J-F Aujol, Journal of Mathematical Imaging and Vision, volume 60, issue 4, pages 576-593, 2018.
  8. Interactive Video Colorization within a Variational Framework,
    F. Pierre, J-F. Aujol, A. Bugeau, and V. Ta, SIAM Journal on Imaging Sciences, volume 10, number 4, pages 2293-2325, 2017.
  9. Variational Contrast Enhancement of Gray-Scale and RGB Images,
    F. Pierre, J-F. Aujol, A. Bugeau, G. Steidl, and V. Ta, Journal of Mathematical Imaging and Vision, volume 57, pages 99-116, 2017.
  10. Estimation of the noise level function based on a non-parametric detection of homogeneous image regions,
    C. Sutour, C-A. Deledalle, and J-F. Aujol, SIAM Journal on Imaging Sciences, volume 8, number 4, pages 2622-2661, 2015.
  11. Edge-based multi-modal registration and application for night vision devices,
    C. Sutour, J-F. Aujol, C-A. Deledalle, and B. Denis de Senneville, Journal of Mathematical Imaging and Vision, volume 53, number 2, pages 131-150, 2015.
  12. Luminance-Chrominance Model for Image Colorization,
    F. Pierre, J-F. Aujol, A. Bugeau, N. Papadakis, and V. Ta, SIAM Journal on Imaging Sciences, volume 8, number 1, pages 536-563, 2015.
  13. Regularized Discrete Optimal Transport,
    S. Ferradans, N. Papadakis, G. Peyre, and J-F. Aujol, SIAM Journal on Imaging Sciences, 2014, volume 7, issue 3, pp. 1853-1882, 2014.
  14. Synthesizing and Mixing Stationary Gaussian Texture Models
    G-S. Xia, S. Ferradans, G. Peyre, and J-F. Aujol, SIAM Journal on Imaging Sciences, volume 8, number 1, pp 476-508, 2014.
  15. Poisson Skeleton Revisited: A New Mathematical Perspective
    G. Aubert and J-F. Aujol, Journal of Mathematical Imaging and Vision, volume 48, issue 1, pp 149-159, 2014.
  16. High-dimension multi-label problems: convex or non convex relaxation?
    N. Papadakis, R. Yildizoglu, J-F. Aujol and V. Caselles, SIAM Journal on Imaging Sciences, volume 6, number 4, pp 2603-2639, 2013.
  17. A bias-variance approach for the Non-Local Means
    Vincent Duval, Jean-Francois Aujol and Yann Gousseau, SIAM Journal on Imaging Sciences, volume 4, number 2, pages 760-788, 2011.
  18. Locally parallel texture modeling
    Pierre Maurel, Jean-Francois Aujol and Gabriel Peyre, SIAM Journal on Imaging Sciences, volume 4, number 1, pages 413-447, 2011.
  19. Exemplar-based inpainting from a variational point of view
    Jean-Francois Aujol , Said Ladjal, and Simon Masnou, SIAM Journal on Mathematical Analysis, volume 42, issue 3, pages 1246-1285, 2010.
  20. Mathematical modeling of textures : application to color image decomposition with a projected gradient algorithm
    Vincent Duval, Jean-Francois Aujol and Luminita Vese, Journal of Mathematical Imaging and Vision, volume 37, issue 3, pages 232-248, 2010.
  21. The TVL1 model: a geometric point of view
    Vincent Duval, Jean-Francois Aujol and Yann Gousseau, SIAM Journal on Multiscale Modeling and Simulation, volume 8, number 1, pages 154-189, November 2009.
  22. Local scale measure from the topographic map and application to remote sensing images
    Bin Luo, Jean-Francois Aujol and Yann Gousseau, SIAM Journal on Multiscale Modeling and Simulation, volume 8, number 1, pages 1-29, September 2009.
  23. Irregular to regular sampling, denoising and deconvolution
    Gabriele Facciolo, Andres Almansa, Jean-Francois Aujol and Vicent Caselles, SIAM Journal on Multiscale Modeling and Simulation, volume 7, number 4, pages 1574-1608, April 2009.
  24. A Variational Approach to removing Multiplicative Noise
    Gilles Aubert and Jean-Francois Aujol, SIAM Journal on Applied Mathematics, volume 68, number 4, pages 925-946, January 2008.
  25. Constrained and SNR-based Solutions for TV-Hilbert Space Image Denoising
    Jean-Francois Aujol and Guy Gilboa, Journal of Mathematical Imaging and Vision, volume 26, numbers 1-2, pages 217-237, November 2006.
  26. Scale recognition, regularization parameter selection, and Meyer's G norm in total variation regularization
    David Strong, Jean-Francois Aujol and Tony Chan, SIAM Journal on Multiscale Modeling and Simulation, volume 5, number 1, pages 273-303, 2006.
  27. Structure-Texture Image Decomposition - Modeling, Algorithms, and Parameter Selection
    Jean-Francois Aujol, Guy Gilboa, Tony Chan, and Stanley Osher, International Journal of Computer Vision, volume 67, number 1, pages 111-136, April 2006.
  28. Detecting codimension-two objects in an image with Ginzburg-Landau models
    Gilles Aubert, Jean-Francois Aujol and Laure Blanc-Feraud, International Journal of Computer Vision, volume 65, numbers 1-2, pages 29-42, November 2005.
  29. Dual norms and image decomposition models
    Jean-Francois Aujol and Antonin Chambolle, International Journal of Computer Vision, volume 63, number 1, pages 85-104, June 2005.
  30. Modeling very oscillating signals. Application to image processing
    Gilles Aubert and Jean-Francois Aujol, Applied Mathematics and Optimization, volume 51, number 2, pages 163-182, March/April 2005.
  31. Image decomposition into a bounded variation component and an oscillating component
    Jean-Francois Aujol, Gilles Aubert, Laure Blanc-Feraud and Antonin Chambolle, Journal of Mathematical Imaging and Vision, volume 22, number 1, pages 71-88, January 2005.
  32. Optimal partitions, regularized solutions, and application to image classification
    Gilles Aubert and Jean-Francois Aujol, Applicable Analysis, volume 84, number 1, pages 15-35, January 2005.

 

Image processing

 

  1. Generative Adversarial Network for Pansharpening with Spectral and Spatial Discriminators,
    A. Gastineau, J-F. Aujol, Y. Berthoumieu, and C. Germain, IEEE Transactions on Geoscience and Remote Sensing, volume 60, 2021.
  2. Diffusion and inpainting of reflectance and height LiDAR orthoimages,
    P. Biasutti, J-F Aujol, M. Bredif, and A. Bugeau, Computer Vision and Image Understanding, volume 179, pages 31-40, 2019.
  3. Range-Image: Incorporating sensor topology for LIDAR point clouds processing,
    P. Biasutti, J-F Aujol, M. Bredif and A. Bugeau, Photogrammetric Engineering & Remote Sensing, volume 84, number 6, pages 367-375, 2018.
  4. Joint Inpainting of Depth and Reflectance with Visibility Estimation,
    M. Bevilacqua, P. Biasutti, J-F Aujol, M. Bredif, and A. Bugeau, ISPRS Journal of Photogrammetry and Remote Sensing, volume 125, pages 16-32, 2017.
  5. Texture Reconstruction guided by the Histogram of a High-Resolution patch,
    M. El Gueche, J-F Aujol, Y. Berthoumieu, and C-A. Deledalle, IEEE Transactions on Image Processing, volume 26, number 2, pages 549-560, 2017.
  6. Image Zoom Completion,
    M. Hidane, M. El Gueche, J-F Aujol, Y. Berthoumieu, and C-A. Deledalle, IEEE Transactions on Image Processing, volume 25, number 8, pages 3505-3517, 2016.
  7. Adaptive regularization of the NL-means: Application to image and video denoising,
    C. Sutour, C. Deledalle, and J-F. Aujol, IEEE Transactions on Image Processing, volume 23, number 8, August 2014.
  8. Indexing of satellite images with different resolutions by wavelet features
    Bin Luo, Jean-Francois Aujol, Yann Gousseau and Said Ladjal, IEEE Transactions on Image Processing, volume 17, number 8, pages 1465-1472, August 2008.
  9. Resolution independant characteristic scale dedicated to satellite images
    Bin Luo, Jean-Francois Aujol, Yann Gousseau, Said Ladjal and Henri Maitre, IEEE Transactions on Image Processing, volume 16, number 10, pages 2503-2514, October 2007.
  10. Combining geometrical and textured information to perform image classification
    Jean-Francois Aujol and Tony Chan, Journal of Visual Communication and Image Representation, volume 17, number 5, pages 1004-1023, October 2006.
  11. Color image decomposition and restoration
    Jean-Francois Aujol and Sung H. Kang, Journal of Visual Communication and Image Representation, volume 17, number 4, pages 916-928, August 2006.
  12. Wavelet-based level set evolution for classification of textured images
    Jean-Francois Aujol, Gilles Aubert and Laure Blanc-Feraud, IEEE Transactions on Image Processing, volume 12, number 12, pages 1634-1641, December 2003.



Disclaimer:
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.