ACTUALITÉS
Le GIS FRANCE GRILLES, SLICES-FR/Grid’5000, le Groupe Calcul, le GDR RSD, GENCI et les mésocentres de MesoNET organisent ensemble les JCAD 2024, Journées Calcul Données : Rencontres scientifiques et techniques autour du calcul et des données. Cette année, les JCAD sont organisées par le Mésocentre de Calcul Intensif Aquitain (MCIA) et l’IMB, avec le soutien de l’université de Bordeaux, du 04 au 06 novembre 2024 sur le Domaine du Haut-Carré.
Interview de Magalie Bénéfice qui vient d’obtenir un post-doctorat long en Mathématiques au sein de l’Institut Elie-Cartan de Lorraine (IECL) à Nancy.
Les inscriptions pour les demandes de stages de seconde seront ouvertes à partir du 2 janvier 2025.
Le programme Partenariats Hubert Curien vient d’attribuer un financement à Jasmin Raissy, afin de développer les échanges scientifiques internationaux avec l’università degli studi di Parma.
Le "Plan de conservation partagée des périodiques imprimés de Mathématiques" (PCMath) est lauréat du Cristal collectif 2024. A travers la qualité de son fond documentaire et l’implication de deux membres de l’IMB dans le Comité de pilotage du Plan, la BMI et l’IMB occupent une place prépondérante au sein du réseau national des bibliothèques de mathématiques et du PCMath.
Félicitations à Marius Tucsnak qui vient d’être nommé membre Senior de l’Institut Universitaire de France.
Le prix ECCOMAS Jacques-Louis Lions pour jeune chercheur a été décerné à Walter Boscheri. Ce prix est décerné à de jeunes chercheurs ayant apporté une contribution exceptionnelle dans le domaine des mathématiques.
L'IMB en bref
Institut de Mathématiques de Bordeaux UMR 5251
Directeur : Vincent Koziarz
L’Institut de Mathématiques de Bordeaux (IMB) est une unité mixte de recherche (UMR 5251) CNRS - Université de Bordeaux - Bordeaux INP.
Laboratoire d’accueil de l’Ecole Doctorale de Mathématiques et Informatique, l’IMB regroupe l’essentiel de la recherche en mathématiques du site bordelais.
La recherche à l’IMB est structurée autour de sept équipes :
– Analyse (responsable : M. Tucsnak)
– Calcul scientifique et Modélisation (responsable : R. Loubère)
– EDP et Physique mathématique (responsable : L. Michel)
– Géométrie (responsable : L. Bessières)
– Image Optimisation et Probabilités (responsable : J. Bigot)
– Optimisation Mathématique Modèle Aléatoire et Statistique (responsable : B. Detienne)
– Théorie des Nombres (responsable : D.Tossici)
L’IMB collabore avec le centre Inria de l’université de Bordeaux au sein des équipes-projets ASTRAL, CANARI, CARDAMOM, CARMEN, EDGE, MEMPHIS, MONC.
L’IMB participe à un Laboratoire Transfrontalier Commun avec le Basque Center for Applied Mathematics, l’Université du Pays Basque et Tecnalia. L’IMB est aussi partenaire du CEA Cesta via le LRC Anabase, de l’ONERA via la chaire PROVE, et de Naval Group via l’EPC Astral. Il participe actuellement à 35 projets ANR et 6 projets européens, compte 3 membres IUF (dont 1 sénior) et 1 ERC Starting Grant.
Les membres de l’IMB sont localisés sur trois sites :
– Sur le campus de Talence, l’IMB occupe une partie du bâtiment A33 qu’il partage entre autres avec l’UF Mathématiques et Interactions et la Bibliothèque de Mathématiques et Informatique.
– Sur le campus de Talence, dans le centre Inria de l’Université de Bordeaux
– Sur le site de l’hôpital Xavier Arnozan à Pessac au sein de l’IHU Liryc
Pour leurs enseignements, les membres de l’IMB sont affectés aux structures associées :
– UF Mathématiques et Interactions
– ENSEIRB-MATMECA
– IUT Bordeaux
– INSPÉ de l’académie de Bordeaux
– ENSC
AGENDA
Deep learning has revolutionised image processing and is often considered to outperform classical approaches based on accurate modelling of the image formation process. In this presentation, we will discuss the interplay between model-based and learning-based paradigms, and show that hybrid approaches show great promises for scientific imaging, where interpretation and robustness to real-world degradation is important. We will present two applications on super-resolution and high-dynamic range imaging, and exoplanet detection from direct imaging at high contrast.
N'oubliez pas de vous inscrire à la liste maths-ia !
https://listes.math.u-bordeaux.fr/wws/subscribe/mathsia?previous_action=info
A Coulter counter is an impedance measurement system widely used in blood analyzers to count and size red blood cells, thus providing information about the most numerous cells of the body. In Coulter counters, cells flow through a detection zone where an electric field is imposed, which is disturbed when a cell passes through. The number of these impedance signals yield the red blood cell count, while the cell volume is supposed to be proportional to the amplitude of the signals. However, in real systems, the red blood cells trajectories in the system does not allow to verify the assumptions necessary to provide an accurate volume measurement. For a few years, IMAG has been developing the YALES2BIO solver for the prediction of red blood cell dynamics under flow. In this presentation, I will describe the fluid-structure problem and the numerical method used, then share how numerical simulation has been used to understand the signals in industrial Coulter counters and to improve the measurements of red blood cell volumes rendered by such systems. In addition, I will discuss how the mechanical properties of RBCs impact the measurements. This work has been performed during the PhD theses of Pierre Taraconat and Pierre Pottier (Horiba Medical & IMAG).
Soit $K$ un corps algébriquement clos de caractéristique quelconque. Soit $f \in K[[x,y]]$ une série réduite et $r(f)$ le nombre de ses facteurs irréductibles. Soit $\mathcal{O}=K[[x,y]]/(f)$ et $\overline{\mathcal{O}}$ sa cloture intégrale. On note $\delta(f)=\dim_K \overline{\mathcal{O}}/\mathcal{O}$ et $\mu(f)=\dim_K K[[x,y]]/(f'_x,f'_y)$, le nombre de Milnor. Milnor a montré en 1968 que si $K=\mathbb{C}$,
$$\mu(f)=2\delta(f)-r(f)+1.$$
En 1973, Deligne a montré que si la caractérisque de $K$ est arbitraire
$$\mu(f)\geq 2\delta(f)-r(f)+1.$$
Le but de cet exposé est d'énoncer une conjecture sur la caractéristique de $K$ pour avoir l'égalité.
La conjecture standard de type Hodge porte sur les nombres d'intersections de sous-variétés d'une variété projective. Elle a de nombreuses conséquences en arithmétique, dans cet exposé on construira des variétés abéliennes A qui satisfont à cette conjecture. L'outil principal permettant la construction de variétés abéliennes A est la théorie de Honda-Tate, qui relie ces dernières à des objets de théorie algébrique des nombres. On sera ensuite amené à étudier l'algèbre des classes de Tate de A, qui est un invariant plus manipulable que l'ensemble des sous-variétés de A.