Les thématiques sont articulées autour de la géométrie différentielle, de la géométrie analytique et algébrique et des système dynamiques (responsables : Jean-Philippe Furter et Yohan Brunebarbe)
Une notion simple de complexité topologique d'une variété lisse est donnée par la nombre minimal de simplexes dans une triangulation. Pour une variété riemannienne fermée à courbures sectionnelles normalisées il est naturel de comparer cet invariant au volume riemannien. Gelander a conjecturé au début du siècle que pour les variétés localement symétriques irréductbles de dimension $d \ge 4$ le rapport de ces deux quantités devrait être borné dans les deux sens (par une constante ne dépendant que de d). Je présenterai un travail en commun avec Mikolaj Fraczyk et Sebastian Hurtado où nous démontrons cette conjecture dans le cas des variétés arithmétiques.
La systole d'une surface hyperbolique est la longueur de la géodésique fermée la plus courte sur la surface. Déterminer la systole maximale possible d'une surface hyperbolique d'une topologie donnée est une question classique en géométrie hyperbolique. Je vais parler d'un travail commun avec Mingkun Liu sur la question de ce que les constructions aléatoires peuvent apporter à ce problème d'optimisation.
On dit qu'une classe de groupes de type fini satisfait une alternative de Tits si chacun de ces groupes est soit "petit" (le sens peut dépendre du contexte), soit contient un groupe libre. L'alternative de Tits originelle concerne les groupes linéaires (et dans ce cas petit signifie virtuellement résoluble). Depuis, elle a été démontrée dans de nombreux contextes géométriques, souvent en courbure négative : groupes agissant sur des espaces hyperboliques, sous-groupes de groupes modulaires de surfaces ou de Out(F_N), groupes agissant sur des complexes simpliciaux avec des bonnes propriétés de courbure, etc.
Je présenterai une nouvelle preuve de l'alternative de Tits pour les groupes agissant sur des immeubles de type Ã_2 (objets que j'introduirai). La nouveauté de notre approche est qu'elle se base sur des marches aléatoires. On démontre également au passage un théorème "local-global" : un groupe dont tous les éléments fixent un point a un point fixe global. C'est un travail en commun avec Corentin Le Bars et Jeroen Schillewaert.
Les travaux de Mañé-Sad-Sullivan et Lyubich (années 80) caractérisent le lieu de bifurcation d'une famille de fractions rationnelles ou de polynômes d'une variable complexe, vus comme des systèmes dynamiques. Par la suite (années 2000) DeMarco, Bassanelli, Berteloot et d'autres ont, à l'aide de méthodes issues de la théorie du pluripotentiel, introduit une mesure naturelle appelée la mesure de bifurcation, dont le support est strictement inclus dans le lieu de bifurcation, et qui détecte les bifurcations "maximales". On présentera un résultat récent sur l'existence de disques holomorphes contenus dans le support de cette mesure, dans le cas où la famille est celle des polynômes cubiques.
Travail en collaboration avec Davoud Cheraghi et Arnaud Chéritat.
Pour un groupe G donné, on veut décrire les actions possibles de G par homéomorphismes de la droite, à semi-conjugaison près. Lorsque G est de type fini, on peut faire cela à travers l'étude de la dynamique d'un flot sur un espace compact. On décrira ce flot dans plusieurs exemples, et on discutera de certaines applications. Il s'agit d'un projet en collaboration avec Brum, Matte Bon, et Rivas.