PUBLICATIONS

BOOKS

PROCEEDINGS (CO-)EDITED

PAPERS IN REFEREED JOURNALS AND PROCEEDINGS

  1. Z. Ma, and P. Magal (2024), Global asymptotic stability for Gurtin-MacCamy's population dynamics model, Proceedings of the AMS, 152(2), 765–780.
  2. P. Magal (2024) A return-to-home model with commuting people and workers, Journal of Mathematical Biology 88:9, 1-41
  3. J. Demongeot and P. Magal (2023) Population dynamics model for aging, Mathematical Biosciences and Engineering, MBE, 20(11): 19636-19660
  4. J. Huo, and P. Magal (2023) Speed of convergence to the Perron-Frobenius stationary distribution, Journal of Mathematical Analysis and Applications, 528(2), 127577.
  5. A. Ducrot, H. Kang, and P. Magal (2023) A short proof for Hopf bifurcation in Gurtin-MacCamy's population dynamics model, Proceedings of the AMS, 151(8), 3561-3575.
  6. J. Demongeot, Q. Griette, Y. Maday, P. Magal (2023) A Kermack-McKendrick model with age of infection starting from a single or multiple cohorts of infected patients Proceedings of the Royal Society A, 479: 20220381
  7. J. Demongeot and P. Magal (2022) Spectral method in epidemic time series Biology 2022, 11(12), 1825.
  8. A. Ducrot, and P. Magal (2022) Return-to-home model for short-range human travel, Mathematical Biosciences and Engineering MBE, 19(8), 7737-7755.
  9. A. Ducrot, H. Kang, and P. Magal (2022) Hopf bifurcation theorem for second order semi-linear Gurtin-MacCamy equation, J. Evol. Equ. 22, 72, 1-40.
  10. J. Demongeot, Q. Griette, P. Magal, and G. Webb (2022) Vaccine efficacy for COVID-19 outbreak in New York City Biology 2022, 11(3), 345.
  11. Q. Griette, Z. Liu, P. Magal and R. N. Thompson (2022) Real-time prediction of the end of an epidemic wave: COVID-19 in China as a case-study, (V. Kumar Murty, Jianhong Wu editors) Mathematics of Public Health, Fields Institute Communications, Springer International Publishing.
  12. X. Fu, and P. Magal (2022) Asymptotic behavior of a nonlocal advection system with two populations Journal of Dynamics and Differential Equations 34, 2035-2077.
  13. Q. Griette, J. Demongeot, and P. Magal (2021) What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases? Mathematical Biosciences and Engineering MBE, 19(1): 537–594.
  14. P. Magal, and O. Seydi (2021) Variation of constants formula and exponential dichotomy for nonautonomous non-densely defined Cauchy problems, Canadian Journal of Mathematics, Volume 73, Issue 5, October 2021, pp. 1347 - 1389.
  15. Q. Griette, J. Demongeot, and P. Magal (2021) A robust phenomenological approach to investigate COVID-19 data for France Mathematics in Applied Sciences and Engineering, Vol. 2 No. 3 (2021): pp. 149-218.
  16. P. Magal, O. Seydi, G. Webb, and Y. Wu (2021) A Model of Vaccination for Dengue in the Philippines 2016-2018, Frontiers in Applied Mathematics and Statistics, 01 October 2021.
  17. A. Ducrot, P. Magal, and A. Thorel (2021) An integrated semigroup approach for age structured equations with diffusion and non-homogeneous boundary conditions, Nonlinear Differential Equations and Applications NoDEA volume 28, Article number: 49.
  18. X. Fu, Q. Griette, and P. Magal (2021) Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation, Mathematical Models and Methods in Applied Sciences Vol. 31, No. 05, pp. 861-905. doi
  19. X. Fu, Q. Griette, and P. Magal (2021) Existence and uniqueness of solutions for a hyperbolic Keller--Segel equation Discrete and Continuous Dynamical Systems - Series B, 26(4): 1931-1966.
  20. Q. Griette, and P. Magal (2021) Clarifying predictions for COVID-19 from testing data: the example of New-York State, Infectious Disease Modelling, Volume 6, Pages 273-283.
  21. Z. Liu, and P. Magal (2021) Bogdanov-Takens bifurcation in a predator prey model with age structure, Zeitschrift für angewandte Mathematik und Physik 72, 4.
  22. Z. Liu, P. Magal, G. Webb (2021) Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom Journal of Theoretical Biology Volume 509, 21.
  23. P. Magal, O. Seydi, and F.-B. Wang (2021) Positively Invariant Subset for Non-Densely Defined Cauchy Problems Journal of Mathematical Analysis and Applications Volume 494, Issue 2, 15, 124600.
  24. A. Ducrot, Z. Liu, and P. Magal (2021), Large Speed Traveling Waves for the Rosenzweig-MacArthur predator-prey Model with Spatial Diffusion , Physica D Volume 415, January 2021, 132730.
  25. A. Ducrot, and P. Magal (2020), Integrated Semigroups and Parabolic Equations, Part II: Semilinear Problems , Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XX (2020), 1071-1111.
  26. J. Demongeot, Q. Griette, and P. Magal (2020) SI epidemic model applied to COVID-19 data in mainland China Royal Society Open Science 7:201878. doi
  27. P. Magal, A. Noussair, G. Webb, and Y. Wu (2020) Modeling Epidemic Outbreaks in Geographical Regions: Seasonal Influenza in Puerto Rico , DCDS-S, 13 (12) : 3535-3550.
  28. S.-B. Hsu, Z. Liu, and P. Magal (2020) A Holling's predator-prey model with handling and searching predators , SIAM Journal on Applied Mathematics, Vol. 80, No. 4, pp. 1778-1795.
  29. R.M. Cotta, C.P. Naveira-Cotta, and P. Magal (2020) Modelling the COVID-19 epidemics in Brasil: Parametric identification and public health measures influence, Biology, 9(8), 220.
  30. Q. Griette, P. Magal, and O. Seydi (2020) Unreported cases for Age Dependent COVID-19 Outbreak in Japan , Biology 9, 132.
  31. P. Magal, G. F. Webb, and Y. Wu (2020) A Spatial Model of Honey Bee Colony Collapse Due to Pesticide Contamination of Foraging Bees, Journal of Mathematical Biology 80, 2363–2393.
  32. Z. Liu, P. Magal, O. Seydi, and G. Webb (2020) A model to predict COVID-19 epidemics with applications to South Korea, Italy, and Spain , SIAM News May 01, 2020.
  33. X. Fu, Q. Griette, and P. Magal (2020) A cell-cell repulsion model on a hyperbolic Keller-Segel equation , Journal of Mathematical Biology, 80, 2257–2300.
  34. Z. Liu, P. Magal, O. Seydi, and G. Webb (2020) Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data , Mathematical Biosciences and Engineering 17(4), 3040-3051.
  35. Z. Liu, P. Magal, O. Seydi, and G. Webb (2020) A COVID-19 epidemic model with latency period , Infectious Disease Modelling , 5, Pages 323-337.
  36. Z. Liu, P. Magal, O. Seydi, and G. Webb (2020) Understanding unreported cases in the 2019-nCov epidemic outbreak in Wuhan, China, and the importance of major public health interventions , Biology 9(3), 50.
  37. Z. Liu, and P. Magal (2020) Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions , DCDS-B 25(6), 2271-2292.
  38. P. Magal, G. F. Webb, and Y. Wu (2020) Spatial Spread of Epidemic Diseases in Geographical Settings: Seasonal Influenza Epidemics in Puerto Rico , DCDS-B 25(6), 2185-2202.
  39. A. Ducrot, P. Magal, T. Nguyen, and G. F. Webb (2020) Identifying the Number of Unreported Cases in SIR Epidemic Models, Mathematical Medicine and Biology: A Journal of the IMA 37, 243–261.
  40. P. Magal, G. F. Webb, and Y. Wu (2019) An Environmental Model of Honey Bee Colony Collapse Due to Pesticide Contamination, Bulletin of Mathematical Biology , 81, 4908–4931.
  41. P. Magal, and O. Seydi (2019) Persistence of a normally hyperbolic manifold for a system of non densely defined Cauchy problems, Journal of Differential Equations 267(5), 2950-3008.
  42. A. Ducrot, and P. Magal (2019) A center manifold for second order semi-linear differential equations on the real line and applications to the existence of wave trains for the Gurtin-McCamy equation, Trans. Amer. Math. Soc. 372, 3487-3537.
  43. P. Magal, O. Seydi, and F-B. Wang (2019) Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models, J. Math. Anal. Appl. 479(1), 450-481.
  44. J. Dyson, F. Le Foll, P. Magal, A. Noussair, and J. Pasquier (2019) Direct and Indirect P-glycoprotein transfers in MCF7 breast cancer cells, Journal of Theoretical Biology 416(14), 239-253.
  45. P. Magal, G. F. Webb, and Y. Wu (2019) On the Basic Reproduction Number of Reaction-diffusion Epidemic Models, SIAM J. Appl. Math. 79-1, 284-304.
  46. P. Magal, and Z. Zhang (2018) A system of state-dependent delay differential equation modelling forest growth I: semi-flow properties, Journal of Evolution Equations 18(4), 1853-1888.
  47. P. Magal, and G. Webb (2018) The parameter identification problem for SIR epidemic models: Identifying Unreported Cases, Journal of Mathematical Biology 77(6-7), 1629–1648.
  48. P. Magal, G. Webb, and Y. Wu (2018), On a Vector-host Epidemic Model with Spatial Structure, Nonlinearity 31, 5589–5614.
  49. A. Ducrot, X. Fu, and P. Magal (2018), Turing and Turing-Hopf bifurcations for a reaction diffusion equation with nonlocal advection, Journal of Nonlinear Sciences 28, 1959-1997.
  50. P. Magal, and Z. Zhang (2018), A system of state-dependent delay differential equation modelling forest growth II: boundedness of solutions, Nonlinear Analysis Series B: Real World Applications 42, 334-352.
  51. P. Magal, and Z. Zhang (2018), Numerical simulations of a population dynamic model describing parasite destruction in a wild type pine forest, Ecological Complexity 34, 147-160.
  52. P. Magal, O. Seydi, and G. Webb (2018), Final size of a multi-group SIR epidemic model: Irreducible and non-irreducible modes of transmission, Mathematical Biosciences 301, 59-67.
  53. N. Hegoburu, P. Magal, M. Tucsnak (2018), Controllability with positivity constraints of the Lotka-McKendrick system, SIAM J. Control Optim. 56-2, 723-750.
  54. P. Magal, A. Noussair, J. Pasquier, P. Zongo, and F. Le Foll (2017), A model for transfer of P-glycoproteins in MCF-7 breast cancer cell line with multiple transfer rules, Bulletin of Mathematical Biology 79, 2049-2067.
  55. P. Magal, and Z. Zhang (2017), Competition for light in forest population dynamics: from computer simulator to mathematical model, Journal of Theoretical Biology 419, 290-304.
  56. A. Ducrot, P. Magal, and O. Seydi (2017), Singular perturbation for an abstract non-densely defined Cauchy problem, J. Evolution Equations 17(3), Volume 17, 1089–1128.
  57. P. Magal, O. Seydi, and G. Webb (2016), Final size of an epidemic for a two group SIR model, SIAM Journal on Applied Mathematics, 76, 2042-2059.
  58. Z. Liu, P. Magal, and D. Xiao (2016), Bogdanov-Takens bifurcation in a predator prey model, Zeitschrift fuer Angewandte Mathematik und Physik 67:137.
  59. Z. Liu, P. Magal, and S. Ruan (2016), Oscillations in Age-Structured Models of Consumer-Resource Mutualisms, Discrete and Continuous Dynamical Systems - Series B 21(2), 537-555.
  60. J. Chu, Z. Liu, P. Magal, and S. Ruan (2016), Normal Forms for an Age Structured Model, Journal of Dynamics and Differential Equations 28, 733-761.
  61. A. Ducrot, P. Magal, and O. Seydi (2016), A singularly perturbed Delay Differential Equation modeling nosocomial infections, Differential and Integral Equations, 29 (3-4), 321-358.
  62. A. Ducrot, P. Magal, O. Seydi (2016), Persistence of exponential trichotomy for linear operators: A Lyapunov-Perron approach, Journal of Dynamics and Differential Equations 28, 93–126.
  63. A. Ducrot, P. Magal, and O. Seydi (2015), A finite-time condition for exponential trichotomy in infinite dynamical systems, Canad. J. Math. Vol. 67 (5), 1065–1090.
  64. Z. Liu, P. Magal, and H. Tang (2015), Hopf bifurcation for a spatially and age structured population dynamics model, DCDS B, 20 (6), 1735-1757.
  65. G. Webb, C. Browne, X. Huo, O. Seydi, M. Seydi, P. Magal (2015), A Model of the 2014 Ebola Epidemic in West Africa with Contact Tracing, PLOS Currents Outbreaks January 2015.
  66. X. Fu, Z. Liu, and P. Magal (2015), Hopf bifurcation in an age-structured population model with two delays, Communications on Pure and Applied Analysis, 14 (2) 657-676.
  67. Z. Liu, P. Magal, and S. Ruan (2014), Normal forms for semilinear equations with non-dense domain with applications to age structured models, J. Differential Equations 257, 921–1011.
  68. A. Ducrot, and P. Magal (2014), Asymptotic behaviour of a non-local diffusive logistic equation, SIAM Journal on Mathematical Analysis 46(3), 1731–1753.
  69. P. Magal, and S. Ruan (2014), Susceptible-Infectious-Recovered Models Revisited: From the Individual Level to the Population Level, Mathematical Biosciences 250, 26-40.
  70. J. Chu, and P. Magal (2013), Hopf bifurcation for a size structured model with resting phase, Discrete and Continuous Dynamical Systems 33(11/12), 4891-4921.
  71. P. Magal, and C.C. McCluskey (2013), Two group infection age model: an application to nosocomial infection, SIAM J. Appl. Math., 73(2), 1058-1095.
  72. A. Ducrot, M. Langlais, and P. Magal (2013), Multiple travelling waves for an SI-epidemic model, Networks and Heterogeneous Media (8)1, 171-190.
  73. A. Ducrot, P. Magal, and S. Ruan (2013), Projectors on the generalized eigenspaces for PDE with delay, in ``Infinite Dimensional Dynamical Systems'', J. Mallet-Paret, J. Wu, Y. Yi, and H. Zhu (eds.), Fields Institute Communications Vol. 64, 353-390.
  74. Z. Liu, P. Magal, and S. Ruan (2012), Center-unstable manifold theorem for non-densely defined Cauchy problems, and the stability of bifurcation periodic orbits by Hopf bifurcation, Canadian Applied Mathematics Quarterly (20)2, 135-178.
  75. C. Beaumont, T. Thanh-Son, P. Zongo, A.-F. Viet, P. Magal (2012), Use of integrated studies to appreciate potential benefits from genetic resistance to Salmonella carrier state in fowls, In “Salmonella - Distribution, Adaptation, Control Measures and Molecular Technologies” Edited by B. A. Annous and J. B. Gurtler, InTech, p. 221-238.
  76. J. Pasquier, L. Galas, C. Boulangé-Lecomte, D. Rioult, F. Bultelle, P. Magal, G. Webb and F. Le Foll (2012), Different modalities of intercellular membrane exchanges mediate cell-to-cell P-glycoprotein transfers in MCF-7 breast cancer cells, Journal of Biological Chemistry Mar 2;287(10):7374-8.
  77. L. Fumanellia, P. Magal, D. Xiao, and X. Yu (2012), Qualitative analysis of a model for co-culture of bacteria and amoebae, Mathematical Biosciences and Engineering 9, 259-279.
  78. A. Ducrot, M. Langlais, P. Magal (2012), Qualitative analysis and traveling wave solutions for the SI model with vertical transmission, Communications on Pure and Applied Analysis 11, 97-113.
  79. J. Wang, L. Wang, P. Magal, Y. Wang, J. Zhuo, X. Lu and S. Ruan (2011), Modeling the Transmission Dynamics of Methicillin-Resistant Staphylococcus Aureus in Beijing Tongren Hospital, Journal of Hospital Infection 79, 302-308.
  80. A. Ducrot, and P. Magal (2011), Travelling wave solution for infection age structured epidemic model with vital dynamics, Nonlinearity 24, 2891–2911.
  81. A. Ducrot, P. Magal, O. Seydi (2011), Nonlinear boundary conditions derived by singular pertubation in age structured population dynamics model, Journal of Applied Analysis and Computation 1, 373-395.
  82. J. Chu, P. Magal, R. Yuan (2011), Hopf bifurcation for a maturity structured population dynamic model, Journal of Nonlinear Science 21, 521-562.
  83. Z. Liu, P. Magal, and S. Ruan (2011), Hopf Bifurcation for non-densely defined Cauchy problems, Zeitschrift fur Angewandte Mathematik und Physik , 62, 191–222.
  84. A. Ducrot, F. Le Foll, P. Magal, H. Murakawa, J. Pasquier, G. F. Webb (2011), An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition, Mathematical Models and Methods in Applied Sciences 21, Suppl. 871-892.
  85. J. Pasquier, P. Magal, C. Boulangé-Lecomte, G. F. Webb, F. Le Foll (2011), Consequences of cell-to-cell P-glycoprotein transfer on acquired multi-drug resistance in breast cancer: a cell population dynamics model, Biology Direct 2011, 6:5 (26 January 2011).
  86. P. Zongo, A-F. Viet, P. Magal, C. Beaumont (2010), A spatio-temporal model to describe the spread of Salmonella within a laying flock, Journal of Theoretical Biology 267, 595-604.
  87. A. Ducrot, P. Magal, S. Ruan (2010), Une introduction aux modèles de dynamique de populations structurées en âge et aux problèmes de bifurcations, Gazette des mathématiciens 125, 27-40. (In French)
  88. P. Magal, C. C. McCluskey, and G. F. Webb (2010), Liapunov functional and global asymptotic stability for an infection-age model, Applicable Analysis 89, 1109 -1140.
  89. A. Ducrot, P. Magal and K. Prevost (2010), Integrated Semigroups and Parabolic Equations. Part I: Linear Perburbation of Almost Sectorial Operators. Journal of Evolution Equations, 10, 263-291.
  90. P. Magal, and S. Ruan (2010), Sustained Oscillations in an Evolutionary Epidemiological Model of Influenza A Drift, Proceedings of Royal Society A, 466, 965-992.
  91. A. Ducrot, Z. Liu, P. Magal (2010), Projectors on the Generalized Eigenspaces for Neutral Functional Differential Equations in Lp Spaces, Canadian Journal of Mathematics, 62, 74-93.
  92. B. Ainseba, C. Benosman, P. Magal (2010), A model for ovine brucellosis incorporating direct and indirect transmission, Journal of Biological Dynamics, 4, 2-11.
  93. A. Ducrot, P. Magal and S. Ruan (2010), Travelling Wave Solutions in Multi-group Age- Structured Epidemic Models, Archive for Rational Mechanics and Analysis, 195, 311-331.
  94. P. Magal, and S. Ruan (2009), Center Manifolds for Semilinear Equations with Non-dense Domain and Applications to Hopf Bifurcation in Age Structured Models, Memoirs of the American Mathematical Society 202, no. 951.
  95. P. Magal, and S. Ruan (2009), On Semilinear Cauchy Problems with Non-dense Domain, Advances in Differential Equations 14 1041-1084.
  96. A. Ducrot, P. Magal (2009), Travelling wave solutions for an infection-age structured model with diffusion, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 139 459-482.
  97. J. Chu, A. Ducrot, P.Magal, S. Ruan (2009), Hopf Bifurcation in a Size Structured Population Dynamic Model with Random Growth, Journal of Differential Equations 247 956-1000.
  98. P. Hinow, F. Le Foll, P. Magal, G. F. Webb (2009), Analysis of a model for transfer phenomena in biological populations, SIAM J. Appl. Math. 70 40-62.
  99. P. Magal (2009), Perturbation of a Globally Stable Steady State and Uniform Persistence, Journal of Dynamics and Differential Equations, 21 1-20.
  100. E. M.C. D'Agata, M. Dupont-Rouzeyrol, P. Magal, D. Olivier, S. Ruan (2008), The Impact of Different Antibiotic Regimens on the Emergence of Antimicrobial-Resistant Bacteria, PLoS ONE 3(12), 1-9.
  101. Z. Liu, P. Magal, and S. Ruan (2008), Projectors on the generalized eigenspaces for functional differential equations using integrated semigroups, Journal of Differential Equations 244 1784-1809.
  102. A. Ducrot, Z. Liu, P. Magal (2008), Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems, J. Math. Anal. Appl. 341 501-518.
  103. K. Prévost, P. Magal, J. Protais, and C. Beaumont (2008), Effect of hens' genetic resistance to Salmonella carrier-state on incidence of bacterial contamination: synergy with vaccination, Veterinary Research 39:20.
  104. C. Jacob, and P. Magal (2007), Influence of Routine Slaughtering on the Evolution of BSE: Example of British and French Slaughterings , Risk Anal. 27(5), 1151-67.
  105. E.M.C. D’Agata, P. Magal, D. Olivier, S. Ruan, G.F. Webb (2007), Modeling Antibiotic Resistance in Hospitals: The Impact of Minimizing Treatment Duration , Journal of Theoretical Biology 249 487-499.
  106. K. Prevost, C. Beaumont, P. Magal (2007), Asymptotic behavior in a Salmonella Infection Model, Mathematical Modelling of Natural Phenomena, 2, 1, 1-22.
  107. P. Magal, and S. Ruan (2007), On Integrated Semigroups and Age Structured Models in Lp Spaces, Differential and Integral Equations 20, 2, 197-239.
  108. K. Prevost, C. Beaumont, P. Magal (2006), A Model of Salmonella infection within hens herd , Journal of Theoretical Biology 242, 755-763.
  109. E. D'Agata, P. Magal, S. Ruan, and G. F. Webb (2006), Asymptotic behavior in nosocomial epidemic models with antibiotic resistance , Differential and Integral Equations 19, 573-600.
  110. A. Dutot, P. Magal, D. Olivier, and G. Savin (2006). Pyocyanic bacillus propagation simulation, In Eurosis, editor, European Simulation and Modelling Conference 440-449.
  111. P. Magal, and X.-Q. Zhao (2005), Global attractors in uniformly persistent dynamical systems , SIAM J. Math. Anal. 37, 251-275.
  112. G.F. Webb, E. D'Agata, P. Magal, S. Ruan, (2005), A model of antibiotic resistant bacterial epidemics in hospitals , Proceedings of the National Academics of Sciences of the USA, 102, 13343-13348.
  113. P. Magal, and H.R. Thieme (2004), Eventual compactness for a semiflow generated by an age-structured models, Communications on Pure and Applied Analysis, 3, 695-727.
  114. P. Magal (2002), Global stability for differential equations with homogeneous nonlinearity and application to population dynamics, Discrete and Continuous Dynamical Systems. (Series B), 2, 541-560.
  115. P. Magal (2002), Mutation and recombination in a model of phenotype evolution, Journal of Evolution Equations. 2, 21-39.
  116. P. Magal (2001), Compact attractors for time-periodic age structured population models, Electronic Journal of Differential Equations. 2001, 1-35.
  117. A. Canada, P. Magal, and J.A. Montero (2001), Optimal control of harvesting in a nonlinear elliptic system arising from population dynamics, J. Math. Anal. Appl. 254, 571-586.
  118. P. Magal (2001), A global stabilization result for a discrete time dynamical system preserving cone, Journal of Difference Equations and Applications, 7, 231-253.
  119. M. Bachar, and P. Magal (2001), Existence of periodic solution for a class of delay differential equations with impulses, Fields Institute Communications, 29, 37-49, Amer. Math. Soc., Providence, RI.
  120. P. Magal (2000), A global attractivity result for a discrete time system, with application to a density dependent population dynamics models. Nonlinear Studies 7, 1-22.
  121. P. Magal, and O. Arino (2000), Existence of periodics solutions for a state dependent delay differential equation, Journal of Differential Equations, 165, 61-95.
  122. P. Magal, and G.F. Webb (2000), Mutation, Selection, and Recombination in a model of phenotype evolution, Discrete and Continuous Dynamical Systems (Series A), 6, 221-236.
  123. P. Magal (1999), A uniqueness result for nontrivial steady state of a density-dependent population dynamics model, J. Math. Anal. Appl. 233,148-168.
  124. P. Magal (1998), Global asymptotic behavior for a discrete model of population dynamics, J. Difference Equ. Appl. 4, 67-92.
  125. P. Magal (1997), A global attractivity result for delay difference equation. Proceedings of the Second international conference on difference equations and applications, 427-437.
  126. P. Magal, and D. Pelletier (1997), A fixed point theorem with application to a model of population dynamics, J. Difference Equ. Appl. 3, 65-87.
  127. D. Pelletier, and P. Magal (1996), Dynamics of a migratory population under different fishing effort allocation schemes in time and space, Can. J. Fish. Aquat. Sci. 53, 1186-1199.

SUPLEMENTARY MATERIAL

  1. P. Magal, and O. Arino (1999), A semi-ejective fixed point theorem, (Suplementary material to Magal and Arino JDE 2000)).