Les thématiques sont articulées autour de la géométrie différentielle, de la géométrie analytique et algébrique et des système dynamiques (responsables : Jean-Philippe Furter et Yohan Brunebarbe)
En théorie des invariants, on est parfois amené à s'intéresser à la polynomialité de l'algèbre des invariants ${\mathbb C}[V]^G$ des fonctions polynomiales sur un espace vectoriel complexe $V$ de dimension finie, par l'action d'un groupe linéaire algébrique $G$.Par exemple si $G$ est connexe, semi-simple agissant par l'action adjointe (ou coadjointe) sur son algèbre de Lie $V=g$ (isomorphe à son dual), un théorème célèbre de Chevalley permet de conclure que l'algèbre des invariants ${\mathbb C}[V]^G$ est une algèbre de polynômes. D'autre part, un théorème de Kostant permet d'établir un isomorphisme d'algèbres entre ${\mathbb C}[g]^G$ et l'algèbre des fonctions polynomiales sur une "tranche de Kostant", par restriction des fonctions à cette tranche : cela donne ce que l'on peut nommer aussi une "section de Weierstrass" pour ${\mathbb C}[g]^G$.Je passerai d'abord en revue quelques exemples ou contre-exemples de polynomialité de certaines algèbres d'invariants obtenues en faisant agir $G$ sur le dual de son algèbre de Lie par l'action coadjointe, et donnerai quelques exemples de sections de Weierstrass obtenues dans le cas de certaines sous-algèbres paraboliques.Je définirai ensuite la contraction d'Inönü-Wigner d'une sous-algèbre parabolique $p$ d'une algèbre de Lie simple, que l'on peut voir comme une certaine dégénérescence de $p$.En m'appuyant sur des techniques employées pour les sous-algèbres paraboliques, je tenterai d'expliquer comment on peut obtenir des (semi)-invariants pour le cas où $V$ est le dual de la contraction d'Inönü-Wigner d'une sous-algèbre parabolique sur lequel agit le groupe adjoint de la contraction.En particulier, pour les contractions d'Inönü-Wigner de certaines sous-algèbres paraboliques maximales (notamment en type B), je donnerai des sections de Weierstrass pour les algèbres de semi-invariants correspondantes, ce qui prouvera en particulier la polynomialité de ces algèbres de semi-invariants.Ceci est un travail en cours, dont une partie se trouve sur arXiv :
https://arxiv.org/abs/2310.06761
Une singularité de dimension $d$ est quasi-ordinaire par rapport à une projection finie $X$ -----> ${\mathbb C}^d$ si le discriminant de la projection est un diviseur à croisements normaux. Les singularités quasi-ordinaires sont au cœur de l'approche de Jung de la résolution des singularités en caractéristique zéro. En caractéristiques positives, elles ne sont pas très utiles du point de vue de la résolution des singularités, le problème de leurs résolutions étant presque aussi compliqué que le problème de résolution des singularités en général. En utilisant une version pondérée du polyèdre caractéristique de Hironaka (ou tout simplement la géométrie des équations) et des plongements successifs dans des espaces affines de "grandes" dimensions, nous introduisons la notion de singularités Teissier qui coïncide avec les singularités quasi-ordinaires en caractéristiques zéro, mais qui en est différente en caractéristiques positives. Nous démontrons qu'une singularité Teissier définie sur un corps de caractéristique positive est la fibre spéciale d'une famille équisingulière sur une courbe de caractéristique mixte dont la fibre générique (en caractéristique zéro donc) a des singularités quasi-ordinaires. Ici, L'équisingularité de la famille correspond à l'existence d'une résolution plongée simultanée.
Travail en collaboration avec Bernd Schober.
L'existence de métriques kählériennes canoniques (Kähler-Einstein, à courbure scalaire constante, etc...) dans une classe de cohomologie donnée d'une variété kählérienne compacte admet une formulation variationnelle comme équation d'Euler-Lagrange de certaines fonctionnelles. Grâce aux travaux profonds de Darvas-Rubinstein et Chen-Cheng, on sait que de plus qu'elles admettent des points critiques (donc des métriques canoniques) ssi elles satisfont une condition de croissance linéaire. Après avoir passé en revue ces objets fondamentaux, j'expliquerai comment cette caractérisation permet de généraliser des travaux d'Arezzo-Pacard et Seyyedali-Szekelyhidi portant sur la stabilité de telles métriques par éclatement de la variété. Il s'agit d'un travail en collaboration avec Mattias Jonsson et Antonio Trusiani.
A une surface algébrique S on associe son groupe des transformations birationnelles Bir(S). Ces groupes et leurs structures algébriques et dynamiques ont fait l'objet d'études approfondies dans les dernières décennies. Dans cet exposé on verra une réponse positive à une question de Charles Favre concernant des sous-groupes dont tous les éléments sont d'un certain type, dit algébrique. J'expliquerai pourquoi ce résultat technique est intéressant et je l'utiliserai pour décrire des propriétés dynamiques des sous-groupes de type fini de Bir(S). Il s'agit d'un travail commun avec Anne Lonjou et Piotr Przytycki.
Sur une variété riemannienne (possiblement singulière), pour chaque classe d'homologie la norme stable mesure la longueur du plus court représentant possible de cette classe. C'est un raffinement naturel du concept de systole, et on s'attend à ce que la norme stable contienne beaucoup d'information géométrique: en contrepartie, la norme stable est généralement très difficile à calculer, si bien qu'il existe très peu d'exemples explicites.
Dans cet exposé je m'intéresserai à la norme stable des surfaces plates. Plus précisément, je montrerai qu'il est possible de calculer la norme stable des tores plats fendus avec la suite de Farey. Ensuite, en recollant des tores fendus je montrerai que l'on obtient des surfaces de demi-translation sur lesquelles la norme stable est connue. Enfin, je montrerai que sur ces surfaces le nombre de classes d'homologie minimisées par des courbes simples de longueur inférieure à un réel x croît sous-quadratiquement en x.
Translation surfaces arise naturally in many different contexts, for example when unfolding billard trajectories or when equipping a Riemann surface with an abelian differential. Most visually, they can be described by (finitely or infinitely many) polygons that are glued along edges which are parallel and have the same length.
In this talk, we will be interested in the Veech groups of translation surfaces, that is, the stabilizer of the natural GL(2,R) action on the moduli space for a given translation surface. Although Veech groups have been studied for several decades, they are in itself not fully understood yet. In particular, it is not known in general whether a given abstract group can be realized as the Veech group of a translation surface.
After introducing the realization problem for Veech groups, I will speak about some recent progress in this direction for infinite translation surfaces. This is joint work with Mauro Artigiani, Chandrika Sadanand, Ferrán Valdez, and Gabriela Weitze-Schmithuesen.
Certain sets of germs at $+ \infty$ of monotone bijections between neighborhoods of $+ \infty$ form groups under composition. This is the case for germs of functions definable in an o-minimal structure, for certain germs lying in Hardy fields, as well as for more abstract functions defined on fields of formal series, such as transseries.
In this talk I will describe properties of the resulting ordered groups, and show that they can be studied using valuation-theoretic tools adapted to this non-commutative context.
We consider the moduli space of Abelian differentials on compact Riemann surfaces. It is stratified by the degree of the zeros of the differential and each stratum has a linear structure coming from period coordinates. Each stratum admits an action by GL(2,R) and this action is relevant in the study of billiard dynamics. I aim to discuss works in collaboration with Julian Rüth and Kai Fu in which we design computer programs to guess and certify GL(2,R)-orbit closures.
Un sous-ensemble $A$ de $\mathbf{N}$ est dit dense s’il est de densité asymptotique supérieure positive, et épars s’il est de densité nulle. Un théorème classique de Furstenberg et Sarközy dit que si $A$ est dense, alors il existe des éléments distincts $a, a'$ dans $A$ tels que $a-a' = n^2$ pour un certain entier $n$. Un ensemble $H$ d'entiers positifs est dit intersectif si l'on peut remplacer l'ensemble des carrés par $H$ dans le théorème de Furstenberg-Sarközy, autrement dit si $(A-A) \cap H$ est non vide. L'étude des ensembles intersectifs se trouve à l'intersection de plusieurs domaines de mathématiques, y compris la théorie des nombres, la combinatoire et la théorie ergodique.
Dans cet exposé, je discuterai dans quelle mesure ce phénomène est toujours valable, lorsque $A$ est un sous-ensemble dense de l'ensemble des nombres premiers, ou plus généralement d'un ensemble épars quelconque $E$ (à la place de $\mathbf{N}$). Il s'agit d'un travail en commun avec J. T. Griesmer, P.-Y. Bienvenu et A. Le.
Un pavage de Penrose est formé de deux tuiles polygonales dont le ratio des fréquences est égal au nombre d'or. De même, les pavages par la monotuile apériodique découverte en 2023 par David Smith sont tels que le ratio des fréquences des deux orientations de la monotuile est égal à la quatrième puissance du nombre d'or. Aussi, la structure des pavages de Jeandel-Rao est expliquée par le nombre d'or. On connait des pavages apériodiques qui ne sont pas reliés au nombre d'or. Toutefois, la caractérisation des nombres possibles pour de tels ratios est une question, posée dès 1992 par Ammann, Grünbaum et Shephard, qui est toujours ouverte aujourd'hui.
Pour chaque entier positif $n$, nous introduisons un ensemble $\mathcal{T}_n$ composé de $(n+3)^2$ tuiles de Wang (carrés unitaires avec des bords étiquetés). Nous représentons un pavage par des translations de ces tuiles comme une fonction $\mathbb{Z}^2\to\mathcal{T}_n$ appelée configuration. Une configuration est valide si le bord commun des tuiles adjacentes a la même étiquette. Pour chaque entier $n\geq1$, nous considérons le sous-décalage de Wang $\Omega_n$ défini comme l'ensemble des configurations valides pour les tuiles $\mathcal{T}_n$.
La famille $\{\Omega_n\}_{n\geq1}$ élargit la relation entre les entiers quadratiques et les tuiles apériodiques au-delà de l'omniprésent nombre d'or, car la dynamique de $\Omega_n$ implique la racine positive $\beta$ du polynôme $x^2-nx-1$. Cette racine est parfois appelée $n$-ième nombre métallique (https://fr.wikipedia.org/wiki/Nombre_métallique), et en particulier, le nombre d'or lorsque $n=1$ et le nombre d'argent lorsque $n=2$.
L'ensemble $\Omega_n$ est auto-similaire, apériodique et minimal pour l'action de décalage. De plus, il existe une partition polygonale de $\mathbb{T}^2$ qui est une partition de Markov pour une $\mathbb{Z}^2$-action sur le tore. La partition et les ensembles de tuiles de Wang sont symétriques, ce qui les rend, comme les tuiles de Penrose, dignes d'intérêt.
Les détails peuvent être trouvés dans les prépublications disponibles à
https://arxiv.org/abs/2312.03652 (partie I) et
https://arxiv.org/abs/2403.03197 (partie II).
L'exposé présentera une vue d'ensemble des principaux résultats.
Une variété est dite PSC si elle admet une métrique riemannienne complète à courbure scalaire positive. Vers la fin des années 1970, des résultats de Schoen et Yau reposant sur la théorie des surfaces minimales et, en parallèle, des méthodes basées sur la théorie de l’indice développées par Gromov et Lawson, ont permis de classifier les 3-variétés fermées PSC : ce sont exactement celles qui se décomposent en sommes connexes de variétés sphériques et de produits S2xS1. Dans cet exposé, nous présenterons un résultat de décomposition des 3-variétés PSC non compactes : si sa courbure scalaire décroît assez lentement, alors la variété se décompose en somme connexe (possiblement infinie) de variétés sphériques et S2xS1. Ce résultat fait suite à des travaux récents de Gromov et de Wang.
Il s'agit d'un travail en collaboration avec F. Balacheff et S. Sabourau.
Les métriques Lorentziennes à courbure constante ayant un nombre fini de singularités coniques offrent de nouveaux exemples naturels de structures géométriques sur le tore. Des travaux de Troyanov sur leur analogue Riemannien ont montré que la donnée de la structure conforme et des angles aux singularités classifient entièrement les métriques Riemanniennes à singularités coniques. Dans cet exposé nous nous intéresserons aux tores de-Sitter singuliers, en construirons des exemples, et présenterons un phénomène de rigidité rappelant celui de Troyanov : les tores de-Sitter à une singularité d'angle fixé sont déterminés par la classe d'équivalence topologique de leur bi-feuilletage lumière. Nous verrons que cette question géométrique est intimement liée à un problème de dynamique sur les difféomorphismes par morceaux du cercles.
Le problème de Manin-Mumford dynamique est un problème en dynamique algébrique inspiré par des résultats classiques de géométrie arithmétique.
Étant donné un système dynamique algébrique $(X,f)$, où $X$ est une variété projective et $f$ est un endomorphisme polarisé de $X$, on veut déterminer sous quelles conditions une sous-variété $Y$ qui contient une quantité Zariski-dense de points à orbite finie, doit avoir elle-même une orbite finie.
Dans un travail en commun avec Romain Dujardin et Charles Favre, on montre que cette propriété est vérifiée quand $f$ est un endomorphisme régulier du plan projectif provenant d'un endomorphisme polynomial de ${\mathbf C}^2$ (de degré $d \ge 2$), sous la condition supplémentaire que l'action de $f$ à l'infini n'a pas de points critiques périodiques.
La preuve se base sur des techniques provenant de la géométrie arithmétique et de la dynamique analytique, à la fois sur ${\mathbf C}$ et sur des corps non-archimédiens.
Soit $K$ un corps algébriquement clos de caractéristique quelconque. Soit $f \in K[[x,y]]$ une série réduite et $r(f)$ le nombre de ses facteurs irréductibles. Soit $\mathcal{O}=K[[x,y]]/(f)$ et $\overline{\mathcal{O}}$ sa cloture intégrale. On note $\delta(f)=\dim_K \overline{\mathcal{O}}/\mathcal{O}$ et $\mu(f)=\dim_K K[[x,y]]/(f'_x,f'_y)$, le nombre de Milnor. Milnor a montré en 1968 que si $K=\mathbb{C}$,
$$\mu(f)=2\delta(f)-r(f)+1.$$
En 1973, Deligne a montré que si la caractérisque de $K$ est arbitraire
$$\mu(f)\geq 2\delta(f)-r(f)+1.$$
Le but de cet exposé est d'énoncer une conjecture sur la caractéristique de $K$ pour avoir l'égalité.
Can we understand the nature of the singularities that have to be admitted after a blow-up sequence that preserves the normal crossings locus of an algebraic (or complex-analytic) variety X? For example, every surface can be transformed by blowings-up preserving normal crossings to a surface with at most additional Whitney umbrella singularities. We will discuss general conjectures in arbitrary dimensions, and partial solutions. The techniques involve circulant matrices, elementary Galois theory and Newton-Puiseux expansion in several variables. We will discuss results in collaboration with Edward Bierstone and Ramon Ronzon Lavie.
Une notion simple de complexité topologique d'une variété lisse est donnée par la nombre minimal de simplexes dans une triangulation. Pour une variété riemannienne fermée à courbures sectionnelles normalisées il est naturel de comparer cet invariant au volume riemannien. Gelander a conjecturé au début du siècle que pour les variétés localement symétriques irréductbles de dimension $d \ge 4$ le rapport de ces deux quantités devrait être borné dans les deux sens (par une constante ne dépendant que de d). Je présenterai un travail en commun avec Mikolaj Fraczyk et Sebastian Hurtado où nous démontrons cette conjecture dans le cas des variétés arithmétiques.
Les fractions rationnelles postcritiquement finies jouent un rôle important en dynamique complexe à une variable. Elles sont liées à des phénomènes de bifurcations maximales et forment un ensemble dense pour la topologie de Zariski dans l’espace de modules des fractions rationnelles de degré d. En dimensions supérieures, nous montrons, avec Thomas Gauthier et Gabriel Vigny, que leurs analogues ne sont pas Zariski denses dans l’espace de modules des endomorphismes de degré d de l’espace projectif Pk, dès que d et k sont supérieurs ou égaux à 2. La preuve combine des arguments issus de l’analyse complexe, de la géométrie arithmétique et de la dynamique réelle. Deux ingrédients essentiels sont l’utilisation d’ensembles hyperboliques spéciaux appelés mélangeurs, ainsi que l’indépendance des multiplicateurs des points périodiques. Ce dernier point a été récemment généralisé dans un travail en collaboration avec Igors Gorbovickis.
La systole d'une surface hyperbolique est la longueur de la géodésique fermée la plus courte sur la surface. Déterminer la systole maximale possible d'une surface hyperbolique d'une topologie donnée est une question classique en géométrie hyperbolique. Je vais parler d'un travail commun avec Mingkun Liu sur la question de ce que les constructions aléatoires peuvent apporter à ce problème d'optimisation.
On dit qu'une classe de groupes de type fini satisfait une alternative de Tits si chacun de ces groupes est soit "petit" (le sens peut dépendre du contexte), soit contient un groupe libre. L'alternative de Tits originelle concerne les groupes linéaires (et dans ce cas petit signifie virtuellement résoluble). Depuis, elle a été démontrée dans de nombreux contextes géométriques, souvent en courbure négative : groupes agissant sur des espaces hyperboliques, sous-groupes de groupes modulaires de surfaces ou de Out(F_N), groupes agissant sur des complexes simpliciaux avec des bonnes propriétés de courbure, etc.
Je présenterai une nouvelle preuve de l'alternative de Tits pour les groupes agissant sur des immeubles de type Ã_2 (objets que j'introduirai). La nouveauté de notre approche est qu'elle se base sur des marches aléatoires. On démontre également au passage un théorème "local-global" : un groupe dont tous les éléments fixent un point a un point fixe global. C'est un travail en commun avec Corentin Le Bars et Jeroen Schillewaert.
Une courbe (complexe) plane est le lieu des zéros dans CP2 d’un polynôme homogène en trois variables. Toute courbe plane est munie d’une métrique riemannienne induite par la métrique ambiante de Fubini-Study du plan projectif complexe. Nous donnons des bornes inférieures probabilistes sur certaines quantités métriques et spectrales (telles que la systole ou le trou spectral) des courbes planes lorsque celles-ci sont choisies aléatoirement. Il s’agit d’un travail commun avec Damien Gayet.
Le Principe Fondamental d'Euler-Ehenpreis-Palamodov suivant lequel toute solution d'un système homogène d'équations aux dérivées partielles s'avère être une superposition de solutions dites élémentaires relève certes de l'analyse (Fourier, distributions), mais plus encore de la géométrie (analytique et algébrique): résolution des singularités, équations de Bernstein-Sato, théorème des syzygies et théorie des résidus en plusieurs variables complexes. Tout reste à faire par contre lorsque tout un pan de l'algébricité est perdu, comme c'est par exemple le cas lorsque viennent se greffer aux opérateurs différentiels des opérateurs aux différences. Si les conjectures sur les sommes d'exponentielles ou les exponentielles polynômes surgissant alors sont sans doute encore hors de portée, les méthodes introduites depuis les travaux d'A. Wilkie et de J. Pila en théorie de la o-minimalité invitent à revisiter, certes en limitant l'ambition initiale, certaines de ces questions, comme en témoignent les récents résultats de G. Binyamini, D. Novikov et B. Zack (2024). Je me concentrerai dans cet exposé sur les systèmes d'opérateurs différentiels en toutes les variables, mais avec de plus des retards, commensurables ou non, suivant une seule d'entre elles, à savoir le temps. Mon exposé sera le plus introductif possible, s'agissant d'un terrain combinant analyse et géométrie.
Il s'agit d'un travail avec Alekos Vidras (Nicosie).
On peut regarder la propriété d'acylindricité comme une généralisation d'un réseau dans un groupe localement compact et à base dénombrable. Ces dernières années, l'utilité de cette propriété a été démontrée par la surgance des résultats concernant les groupes qui agissent acylindriquement sur un espace hyperbolique. Bien-sûr, les arbres sont des exemples d'espaces hyperboliques, et quand on considère des produits, on voit des phénomènes qui ne sont pas présents en rang-1, comme les réseaux simples Burger-Mozes-Wise, et les noyaux Bieri-Stallings-Bestvina-Brady.
En collaboration avec S. Balasubramanya, nous introduisons une nouvelle classe de groupes à courbure non-positive. Nous regardons la théorie des réseaux semi-simples S-arithmétiques comme une source d'inspiration et étendre la théorie de l'acylindricité au rang supérieur et nous considérons des produits finis d'espaces delta-hyperboliques. La catégorie est fermée par produit direct, sous-groupes et super-groupes d'indice fini. On a aussi des réseaux qui ne sont pas uniformes, On introduit la définition de l'AU-acylindricité (i.e. Acylindricité of Uniformité Ambiguë) et ça nous permet d'avoir une théorie qui contient tous les réseaux semi-simples S-arithmétiques avec des facteurs de rang-1, les groupes hiérarchiquement hyperboliques (HHGs), la déjà riche classe des groupes acylindriquement hyperboliques, et beaucoup plus !
Dans cet exposé, on va discuter deux résultats dans ce contexte. Le premier, c'est une alternative de Tits. Le deuxième sera, si en plus, on a que la projection à chaque facteur est une action de type général, qu'un tel groupe G admet alors une décomposition canonique en produit. Ce type de semi-simplicité descend à Out(G), donnant ainsi une résolution partielle d'une conjecture récente de Sela (2023).
Un élément g d’un groupe G est dit distordu s’il existe une famille finie S dans G qui engendre g et telle que la longueur de g^n pour la métrique des mots associée à S est négligeable par rapport à n (en général, elle croît au plus linéairement en n). Cette notion très utile fournit notamment des obstructions à plonger certains groupes dans d’autres.
Ici, on cherchera à identifier les éléments distordus des groupes de difféomorphismes du segment en différentes régularités. On présentera notamment des obstructions naturelles à la distorsion (telles que la présence de points fixes hyperboliques en régularité $C^1$ et la positivité de la variation asymptotique en régularité supérieure) et on se demandera si ce sont les seules, ou au moins si « la plupart » des difféomorphismes pour lesquels ces obstructions sont absentes sont effectivement distordus.
Un fameux théorème de Laudenbach et Poénaru dit que tout difféomorphisme du bord d'un corps à 1-anses de dimension 4 s'étend en un difféomorphisme de tout le corps-en-anses. Je présenterai une nouvelle preuve de ce résultat et une généralisation aux corps de compression de dimension 4. J'expliquerai aussi en quoi ce résultat est essentiel dans la théorie des variétés compactes de dimension 4.
Pour un groupe G donné, on veut décrire les actions possibles de G par homéomorphismes de la droite, à semi-conjugaison près. Lorsque G est de type fini, on peut faire cela à travers l'étude de la dynamique d'un flot sur un espace compact. On décrira ce flot dans plusieurs exemples, et on discutera de certaines applications. Il s'agit d'un projet en collaboration avec Brum, Matte Bon, et Rivas.
Nous utilisons la fonction zêta de Selberg pour étudier le comportement limite des résonances dans une famille dégénérative de groupes de Schottky kleiniens. Nous prouvons qu'après un redimensionnement approprié, les fonctions zêta de Selberg convergent vers la fonction zêta d'Ihara d'un graphe fini associé au groupe de Schottky non-archimédien agissant sur la droite projective de Berkovich.
De plus, nous montrons que ces techniques peuvent être utilisées pour obtenir un terme d'erreur exponentiel dans un résultat de McMullen (récemment étendu par Dang et Mehmeti) sur l'asymptotique du taux d'annulation de la dimension de Hausdorff d'ensembles limites de certains groupes de Schottky en dégénérescence des surfaces symétriques à trois entonnoirs. Ici, une idée clé est d'introduire une fonction zêta intermédiaire capturant à la fois les informations non archimédiennes et archimédiennes (tandis que les fonctions zêta traditionnelles de Selberg, respectivement d'Ihara, ne concernent que les propriétés archimédiennes, respectivement non archimédiennes). Travail en collaboration avec Carlos Matheus, Wenyu Pan, Zhongkai Tao.
Les réseaux des groupes de Lie de rang supérieur - tel que SL(n,Z), n>2 - sont connus pour la rigidité de leurs actions sur des variétés. Dans cet exposé, je discuterai d’actions de tels groupes discrets sur des variétés compactes munies de structures géométriques, sans volume invariant a priori, telles qu’une classe conforme ou une classe projective. On verra que la nature de la structure géométrique borne le rang du réseau et qu’à la valeur critique, à revêtement près, la seule géométrie possible est celle d’une variété drapeaux modèle. Dans le cas lorentzien, c’est un travail en collaboration avec Thierry Barbot. Je discuterai pour finir de travaux en cours dans d’autres géométries paraboliques.
Dilation surfaces are surfaces modeled after the complex plane whose structure group is generated by the group of translations and dilations. Given a dilation surface, for any direction in $S^1$ there exists a corresponding directional foliation on the surface. In this talk, we will study the four possible types of dynamical behaviour that such a foliation may have (i.e completely periodic, Morse-Smale, minimal or Cantor-like) and deduce a dynamical decomposition theorem for the directional foliation on dilation surfaces using results of C.J. Gardiner and G. Levitt from the 1980s.
In a second step, we study the first return map of the directional foliation on a dilation surface, which is a so-called affine interval exchange transformation (AIET). We introduce a powerful tool called Rauzy-Veech induction in order to develop a renormalization scheme which allows to find a decomposition of any given AIET into finite union of intervals which exhibit only one of the four types of dynamical behaviour. This provides an alternative, purely combinatorial approach to the decomposition results of Levitt and Gardiner and is joint work with Corinna Ulcigrai and Charles Fougeron.
Cet exposé concerne un travail en collaboration avec Tien-Cuong Dinh, Hsueh-Yung Lin, Keiji Oguiso, Long Wang et Xun Yu. Soit X une variété algébrique complexe. Les formes réelles de X sont les variétés réelles W dont la “complexification”, en tant que variété complexe, est isomorphe à X. Bien entendu, certaines variétés complexes n’ont pas de forme réelle. Un fait plus surprenant, mis en évidence par Lesieutre en 2016, est l’existence d’une variété complexe admettant une infinité de formes réelles. Dans cet exposé, on présente une surface de rang de Picard relativement petit possédant une infinité de formes réelles. L’exemple en question est obtenu en adaptant une construction de Dinh-Oguiso-Yu à base de surfaces K3 via une technique due à Mukai. En fin de compte, on fabrique une surface d’Enriques dont l’éclatement en un point très général d'une courbe bien choisie possède une infinité de formes réelles. Si le temps le permet, on expliquera aussi pourquoi le groupe d’automorphismes de cet éclatement n’est pas de type fini.
Les travaux de Mañé-Sad-Sullivan et Lyubich (années 80) caractérisent le lieu de bifurcation d'une famille de fractions rationnelles ou de polynômes d'une variable complexe, vus comme des systèmes dynamiques. Par la suite (années 2000) DeMarco, Bassanelli, Berteloot et d'autres ont, à l'aide de méthodes issues de la théorie du pluripotentiel, introduit une mesure naturelle appelée la mesure de bifurcation, dont le support est strictement inclus dans le lieu de bifurcation, et qui détecte les bifurcations "maximales". On présentera un résultat récent sur l'existence de disques holomorphes contenus dans le support de cette mesure, dans le cas où la famille est celle des polynômes cubiques.
Travail en collaboration avec Davoud Cheraghi et Arnaud Chéritat.
Les strates de différentielles méromorphes à ordres de singularités prescrits sur la sphère de Riemann forment des espaces de modules appelés strates. L'intégration de la differentielle le long de certaines classes d'homologie relatives fournit à ces strates ce que l'on appelle les coordonnées périodes. Fixer les résidus aux pôles (qui sont des périodes particulières) définit la fibration isorésiduelle au-dessus de l'espace vectoriel des configurations de résidus. Il apparaît que le lieu singulier de cette fibration est un arrangement d'hyperplans complexes: l'arrangement de résonance.
Dans le cas particulier des 1-formes avec un seul zéro, la fibration devient un revêtement ramifié. Nous fournissons une formule pour calculer le degré de ce revêtement et analysons sa monodromie. Nos résultats exploitent la correspondance entre l'analyse complexe et la géométrie plate des surfaces de translation.
La géométrie qualitative de ces surfaces de translation est classifiée à l’aide d’arbres décorés, ce qui ramène le calcul du degré du revêtement à un problème combinatoire. Pour les strates avec deux zéros, les fibres isorésiduelles sont des courbes complexes dotées d’une structure de translation canonique. Les singularités de ces fibres codent, à travers leurs invariants locaux, les dégénérescences correspondantes des objets paramétrés. La monodromie est décrite en termes de connexion de Gauss-Manin, qui possède de riches propriétés géométriques et combinatoires.
Ce travail est une collaboration avec Dawei Chen, Quentin Gendron et Miguel Prado.
Ces dernières années, de nombreux progrès ont été réalisés dans l'étude des métriques de Kähler-Einstein sur les variétés singulières. Cependant, il existe très peu de résultats concernant l'existence des métriques kählériennes à courbure scalaire constante sur les variétés singulières. Dans cet exposé, je discuterai de cette question et présenterai nos résultats sur l'existence de telles métriques lorsque la fonctionnelle de Mabuchi est coercitive. Ce sont des travaux en collaboration avec C-M. Pan et A. Trusiani