Responsable : Luis Fredes et Camille Male
Le but de cet exposé sera de comprendre ce que sont les expanseurs quantiques, à quoi ils servent, et comment ils peuvent être construits. On commencera par rappeler la définition des graphes expanseurs classiques, et par expliquer comment définir des analogues quantiques de ces objets. On montrera ensuite que, aussi bien classiquement que quantiquement, des constructions aléatoires fournissent typiquement des exemples d'expanseurs optimaux. Dans le cas quantique, un tel résultat découle d'une analyse spectrale pour des modèles de matrices aléatoires avec une structure tensorielle. Enfin, on verra ce que cela implique en termes de décroissance typique des corrélations dans les systèmes quantiques 1D gouvernés par des interactions locales.
L'exposé se basera principalement sur les travaux suivants: https://arxiv.org/abs/1906.11682 (avec David Pérez-Garcia), https://arxiv.org/abs/2302.07772 (avec Pierre Youssef) et https://arxiv.org/abs/2409.17971.
In this presentation, a response matrix (here, species abundances) is assumed to depend on explanatory variables (here, environmental variables) supposed many and redundant, thus demanding dimension reduction. The Supervised Component-based Generalized Linear Regression (SCGLR), a Partial Least Squares-type method, is designed to extract from the explanatory variables several components jointly supervised by the set of responses. However, this methodology still has some limitations we aim to overcome in this work. The first limitation comes from the assumption that all the responses are predicted by the same explanatory space. As a second limitation, the previous works involving SCGLR assume the responses independent conditional on the explanatory variables. Again, this is not very likely in practice, especially in situations like those in ecology, where a non-negligible part of the explanatory variables could not be measured. To overcome the first limitation, we assume that the responses are partitioned into several unknown groups. We suppose that the responses in each group are predictable from an appropriate number of specific orthogonal supervised components of the explanatory variables. The second work relaxes the conditional independence assumption. A set of few latent factors models the residual covariance matrix of the responses conditional on the components. The approaches presented in this work are tested on simulation schemes, and then applied on ecology datasets.
Séminaire joint avec OptimAI.
A définir
A définir
A définir