IMB > Recherche > Séminaires

Séminaire Optimisation Mathématique Modèle Aléatoire et Statistique

Responsables : Ayse Nur Arslan et Frédéric Barraquand.

  • Le 6 novembre 2024 à 14:00
  • Séminaire Optimisation Mathématique Modèle Aléatoire et Statistique
    Online
    Paula Metzker HEC Montreal
    Optimisation distributionnellement robuste pour le problème de dimensionnement de lots multi-produits sous incertitude du rendement de la production.

    Cette recherche est menée pour examiner une approche d'optimisation distributionnellement robuste appliquée au problème de dimensionnement de lots avec des retards de production et une incertitude de rendement sous des ensembles d'ambiguïté par événement. Les ensembles d'ambiguïté basés sur les moments, Wasserstein et le clustering K-Means sont utilisés pour représenter la distribution des rendements. Des stratégies de décision statiques et statiques-dynamiques sont également considérées pour le calcul d'une solution. Dans cette présentation, la performance de différents ensembles d'ambiguïté sera présentée afin de déterminer un plan de production qui soit satisfaisant et robuste face aux changements de l'environnement. Il sera montré, à travers une expérience numérique, que le modèle reste traitable pour tous les ensembles d'ambiguïté considérés et que les plans de production obtenus demeurent efficaces pour différentes stratégies et contextes décisionnels.


  • Le 21 novembre 2024 à 11:00
  • Séminaire Optimisation Mathématique Modèle Aléatoire et Statistique
    Salle 2, IMB
    Arthur Leonard ENS Lyon
    Optimiser des fonctions de faible dimension sur les entiers

    On s'intéresse au problème d'optimiser une fonction objectif g(W x) + c^T x pour x entier, où chaque coordonnée de x est contrainte dans un intervalle. On suppose que la matrice W est à coefficient entiers de valeur absolue bornée par Delta, et qu'elle projette x sur un espace de petite dimension m << n. Ce problème est une généralisation du résultat de Hunkenschröder et al. dans lequel g est séparable convexe, et x est dans un 0-1 hypercube.


    On présentera un algorithme en complexité n^m (m Delta)^O(m^2), sous la supposition que l'on sache résoudre efficacement le problème lorsque n = m. Cet algorithme utilise les travaux d'Eisenbrand et Weismantel sur la programmation linéaire entière avec peu de contraintes.

    L'algorithme présenté peut être employé théoriquement dans plusieurs problèmes notamment la programmation mixte linéaire avec peu de contraintes, ou encore le problème du sac à dos où l'on doit acheter son sac.


  • Le 28 novembre 2024 à 11:00
  • Séminaire Optimisation Mathématique Modèle Aléatoire et Statistique
    Online
    Liding Xu Zuse Institute Berlin
    Towards an exact framework for quantum state separable problem

    Separable states are multipartite quantum states that can be written as a convex combination of product states. Product states are multipartite quantum states that can be written as a tensor product of states in each space. Quantum state separable problem is an NP-hard problem but fundamental for quantum information theory. We propose two relaxation techniques for this problem. In the view of commutative optimization, we treat the states as matrices of multilinear complex polynomials. Our relaxation technique is found similar to that for complex bilinear polynomials arising in the Alternating Current Optimal Power Flow problem. In the view of non-commutative optimization, we treat the states as tensor products of bounded Positive Semi-definite variables. We propose a generalized McCormick relaxations using linear matrix inequalities. These two relaxations will be the key component to drive an exact branch-and-cut algorithm.