Les exposés couvrent essentiellement les thématiques autour de l’analyse complexe, la théorie des opérateurs, l’analyse harmonique, l’analyse fonctionnelle, la théorie spectrale et la modélisation (responsables : Sylvain Golénia, Andreas Hartmann et Elizabeth Strouse).
Consider a control system 𝛛t f + Af = Bu. Assume that 𝛱 is
a projection and that you can control both the systems
𝛛t f + 𝛱Af = 𝛱Bu,
𝛛t f + (1-𝛱)Af = (1-𝛱)Bu.
Can you conclude that the first system itself is controllable ? We
cannot expect it in general. But in a joint work with Andreas Hartmann,
we managed to do it for the half-heat equation. It turns out that the
property we need for our case is:
If 𝛺 satisfies some cone condition, the set {f+g, f∈L²(𝛺), g∈L²(𝛺),
f is holomorphic, g is anti-holomorphic} is closed in L²(𝛺).
The first proof by Friedrichs consists of long computations, and is
very "complex analysis". But a later proof by Shapiro uses quite
general coercivity estimates proved by Smith, whose proof uses some
tools from algebra : Hilbert's nullstellensatz and/or primary ideal
decomposition.
In this first talk, we will introduce the algebraic tools needed and
present Smith's coercivity inequalities. In a second talk, we will
explain how useful these inequalities are to study the control
properties of the half-heat equation.
In this talk, I will present some introductory facts on Hardy-Toeplitz and Bergman-Toeplitz operators. I will also discuss the presence (or absence) of discrete spectrum for a Bergman-Toeplitz operator; this part of the talk will be based on works of Zhao- Zheng et al., 2010- 2020.
Nous présentons plusieurs exemples de fonctions différentiables ayant des propriétés pathologiques. Nous démontrerons en particulier le résultat suivant, obtenu en collaboration avec A. Daniilidis et S. Tapia. Pour tout N≥1, il existe une fonction f de R ^N dans R, localement Lipschitzienne et différentiable en tout point, telle que pour tout compact connexe d'intérieur non vide, il existe x dans R^N tel que K={ lim Df(x_n); (x_n) converge vers x}.
We investigate the connection between the propagation of smallness in two dimensions and one-dimensional spectral estimates. The phenomenon of smallness propagation in the plane, originally obtained by Yuzhe Zhu, reveals how the value of solutions in a small region extends to a larger domain. By revisiting Zhu’s proof, we obtain a quantitative version that includes an explicit dependence on key parameters. This refinement enables us to establish spectral inequalities for one-dimensional Schrödinger operators.
We provide a characterization of universal and multiplier interpolating sequences for de Branges-Rovnyak spaces where the defining function is a non-extreme, rational function. Previous work on this topic examined interpolation in de Branges-Rovnyak spaces specifically in cases where the space coincides with a local Dirichlet space under norm equivalence. The more general setting we are interested in here corresponds to higher order local Dirichlet spaces recently investigated by Gu, Luo and Richter. In this general setting we characterize universal interpolating sequences and show that they coincide with multiplier interpolating sequences. We also explore random interpolation through the use of Steinhaus sequences.
This is work in progress with A. Hartmann.
La problématique générale des espaces atteignables peut être résumée de la manière suivante pour un système contrôlé donné: étant donné un état initial $u_i$ et un temps $T \gt 0$, décrire l'espace $R(u_i,T)$ des états finaux $u_f$ que l'on peut atteindre à partir de $u_i$ au temps $T$. Déterminer l'espace atteignable des systèmes contrôlés est l'un des principaux problèmes de la théorie du contrôle. Donner une caractérisation précise des états qui peuvent être atteints en un certain temps fixé est une question encore largement ouverte pour les systèmes paraboliques: même pour l'équation de la chaleur à coefficients constants en une dimension et contrôlée depuis la frontière, la caractérisation complète de l'espace atteignable, en termes d'espaces de Bergman, n'a été obtenue que très récemment. Basé sur un travail en commun avec Sylvain Ervedoza, je présenterai des résultats sur l’espace atteignable pour l’équation de la chaleur avec des perturbations d’ordre inférieur ou des semi-linéaire en dimension $d\geq 1$.
After explaining the notions of symmetry and differential equations, we review possibilities of symmetry methods and advantages of their usage in the theory of differential equations and mathematical physics.
As a specific example, we discuss the history of the (real potential symmetric) dispersionless Nizhnik equation and its applications and overview its extended symmetry analysis carried out in our papers. More specifically, we construct essential megaideals of the maximal Lie invariance algebra of this equation. Using the original version of the algebraic megaideals-based method, we compute the point- and contact-symmetry pseudogroups of this equation as well as the point-symmetry pseudogroups of its Lax representation and the original real symmetric dispersionless Nizhnik system. This is the first example in the literature, where there is no need to use the direct method for completing the computation.
In addition, we also find geometric properties of the dispersionless Nizhnik equation that completely define it. Lie reductions of this equation are classified, which results in wide families of its new closed-form invariant solutions. We also study hidden generalized symmetries, hidden cosymmetries and hidden conservation laws of this equation.