On présente brièvement la connexion entre la fonction zêta de Riemann $\zeta(s)$, la fonction zêta de Ruelle $\zeta_{Ruelle}(s)$ et les fonctions zêta dynamiques $\eta_D(s), \eta_N(s).$ Les dernières sont associées au flot de billiard pour l'union $D \subset {\mathbb R}^d$ d'un nombre fini des obstacles compacts disjoints. En particulier, $\eta_D(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}$, où $a_n \in {\mathbb R}$ changent des signes aléatoirement, tandis que $\eta_N(s)$ est une série de Dirichlet avec des coefficients $a_n > 0.$ Pour cela il y a des similitudes entre le comportement de $\eta_D(s)$ et $\frac{1}{\zeta(s)}.$ Les singularités de $\eta_D$ et $\eta_N$ sont importantes pour la distribution des résonances de l'opérateur de Laplace dans l'extérieur de $D$ avec conditions de Dirichlet ou Neumann sur $\partial D$. Dans cette direction, Ikawa a introduit en 1990 la conjecture modifiée de Lax-Phillips (MLPC) affirmant qu'il existe une bande $\{z \in \mathbb{C}: \: 0 < \mathop{\rm Im} z \leq \alpha\}$ contenant un nombre infini des résonances. Dans l'exposé on présente les résultats suivants: (a) Sous une condition de non eclipse, on prouve que $\eta_D$ et $\eta_N$ admettent un prolongement méromorphe sur le plan complexe avec des pôles simples et résidus entiers. (b) Si la frontière $\partial D$ est réelle analytique, la fonction $\eta_D$ n'est pas entière et (MLPC) est satisfaite. (c) Pour $\eta_N$ il existe une bande $\{z \in \mathbb{C}: \beta < \mathop{\rm Re} z < \sigma_a\}$ contenant un nombre infini des pôles et on caractérise les constantes $\beta$ et $\sigma_a$. On présentera une idée de la preuve de (b) et on discutera l'idée de la preuve du prolongement méromorphe de $\zeta_{Ruelle}$ suivant l'article seminal de S. Dyatlov et M. Zworski. Les résultats (a) et (b) sont obtenu en collaboration avec Yann Chaubet.
TBA
TBA