IMB > Recherche > Séminaires

Séminaire de Théorie Algorithmique des Nombres

Responsables : Razvan Barbulescu et Wessel Van Woerden

Page du séminaire

  • Le 19 février 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    David Lubicz
    Improving the AGM point counting algorithm

  • Le 9 avril 2019 à 11:30
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Xavier Caruso imb
    Vers les codes de Gabidulin géométriques
    Dans cet exposé, je commencerai par rappeler la définition et les principales propriétés de codes de Reed-Solomon. Je présenterai ensuite deux extensions classiques de ces codes, à savoir, d'une part, les codes géométriques et, d'autre part, les codes de Gabidulin. Ces deux extensions appaissent toutefois comme orthogonales : du point de vue pratique, elles gomment des limitations différentes de codes de Reed-Solomon tandis que, du point de vue technique, elles son basées sur des constructions mathématiques également très différentes. Dans une deuxième partie de l'exposé, je présenterai quelques idées et quelques résultats en vue d'une généralisation commune des codes géométriques et des codes de Reed-Solomon.
  • Le 28 mai 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Francesco Battistoni University of Milan
    A conjectural improvement for inequalities involving the regulator of number fields
    Given the family of number fields with fixed signature, there exists only a finite number of such fields having regulator less than a prescribed bound: this is due to a classical inequality by Remak, generalized years later by Friedman, which bounds the discriminant of a number field by means of some terms which depend also on the regulator.
  • Le 4 juin 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Corentin Darreye imb
    Équirépartition de sommes de coefficients de formes modulaires en progression arithmétique.
    Après avoir rappelé des résultats classiques d'équirépartition de sommes d'exponentielles, j'expliquerai en quoi ce genre de propriétés permet de mieux comprendre les sommes de coefficients de Fourier de formes modulaires en progression arithmétique. Je donnerai un aperçu de ce qui a été démontré auparavant dans cette thématique pour mieux introduire certaines questions restant ouvertes auxquelles je m'intéresse, notamment le cas des formes modulaires de poids demi-entier.
  • Le 10 septembre 2019 à 09:30
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    David Roe MIT
    The inverse Galois problem for p-adic fields
    We describe a method for counting the number of extensions of $\mathbb{Q}_p$ with a given Galois group $G$, founded upon the description of the absolute Galois group of $\mathbb{Q}_p$ due to Jannsen and Wingberg. Because this description is only known for odd $p$, our results do not apply to $\mathbb{Q}_2$. We report on the results of counting such extensions for $G$ of order up to $2000$ (except those divisible by 512), for $p = 3$, 5, 7, 11, 13. In particular, we highlight a relatively short list of minimal $G$ that do not arise as Galois groups. Motivated by this list, we prove two theorems about the inverse Galois problem for $\mathbb{Q}_p$: one giving a necessary condition for G to be realizable over $\mathbb{Q}_p$ and the other giving a sufficient condition.
  • Le 17 septembre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Fredrik Johansson imb
    Fungrim : The Mathematical Functions Grimoire
    [Fungrim](http://fungrim.org) is a new, open source database of formulas and tables for mathematical functions. All formulas are represented in symbolic, computer-readable form and include explicit conditions for the variables.
  • Le 24 septembre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Jean Kieffer imb
    Computing isogenies from modular equations in genus 2
    Given two elliptic curves such an isogeny of degree l exists between them, there is an algorithm, due to Elkies, that uses modular equations to compute this isogeny explicitly. It is an essential tool in the SEA point counting algorithm: using isogenies is superior to Schoof's original idea of using endomorphisms. In this work, we present the analogue of Elkies' algorithm for Jacobians of genus 2 curves, thus opening the way to using isogenies in higher genus point counting.
  • Le 1er octobre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Damien Robert imb
    An overview of isogeny algorithms
    Let $A$ be an abelian variety and $K$ a finite subgroup. We will discuss several approaches to compute the isogeny $A \mapsto A/K$, starting from Vélu's algorithm for elliptic curves, and then the isogeny theorem for theta functions, Couveignes and Ezome's work on Jacobians of curves, and recent progress with David Lubicz.
  • Le 8 octobre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Jared Asuncion imb
    Computing Hilbert class fields of quartic CM fields using Complex Multiplication
    The Hilbert class field $H_K(1)$ is the maximal unramified abelian extension of $K$. For imaginary quadratic number fields $K$, it can be generated using special values of certain analytic, modular functions. For quartic CM-fields $K$, the corresponding construction yields only a subfield of $H_K(1)$.
  • Le 15 octobre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Gilles Zémor
    Cryptographie post-quantique à base de codes
    Nous nous proposons de faire un état de l'art et de discuter l'état actuel de la cryptologie basée sur les codes. Nous nous intéresserons à l'approche historique, le paradigme de McEliece, ainsi qu'à la méthodologie plus moderne, initiée par Alekhnovich, et inspirée de la cryptologie basée sur les réseaux suite aux travaux d'Ajtai et de Regev en particulier. Cette deuxième approche ne prétendait pas à l'origine déboucher sur des systèmes de chiffrement compétitifs, mais présentait l'avantage théorique d'avoir des preuves de sécurité bien identifiées et reconnues par la communauté de complexité algorithmique et de cryptologie théorique. Nous détaillerons les principes de ces preuves de sécurité qui ne sont pas accessibles de manière évidente dans la littérature. Nous montrerons également en quoi il y a aujourd'hui convergence des deux approches du chiffrement basé sur les codes.
  • Le 22 octobre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Développeurs LFANT IMB
    Hacking session

  • Le 29 octobre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Développeurs LFANT IMB
    Hacking session

  • Le 5 novembre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Henri Cohen imb
    Apéry-Like recursions and modular forms
    Following Zagier and Beukers, we show that the sequences used by Apery in his proofs of the irrationality of zeta(2) and zeta(3) are special cases of more general sequences having surprisingly only integer values, and that many of these sequences can be parametrized by modular forms. Following Almkwist and Zudilin, we also explain that the degree three sequences used for zeta(3) and generalizations can be automatically obtained via a Clausen type hypergeometric identity from the degree two sequences used for zeta(2) and generalizations.
  • Le 8 novembre 2019 à 14:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle de conférences
    Guilhem Castagnos imb
    HDR defense: Cryptographie basée sur les corps quadratiques: cryptanalyse, primitives et protocoles

  • Le 19 novembre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Maria Dostert EPFL
    Exact Semidefinite Programming Bounds for Packing Problems
    Semidefinite Programming (SDP) is a powerful tool to obtain upper bounds for packing problems. For example, one can consider the kissing problem of the hemisphere in dimension 8 which asks for the maximal number of pairwise non-overlapping spheres which can simultaneously touch a central hemisphere in 8-dimensional Euclidean space. The E8 lattice gives a kissing configuration of 183 points. Moreover, using an SDP given by Bachoc and Vallentin one gets an upper bound of 182.99999999996523. Hence, the optimal value is 183. But how can we obtain the exact rational solution of the SDP based on the floating point results given by the SDP solver?
  • Le 26 novembre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 1
    Alice Pellet-Mary ÉNS de Lyon
    An LLL Algorithm for Module Lattices
    A lattice is a discrete subgroup (i.e., $\mathbb Z$-module) of $\mathbb R^n$ (where $\mathbb Z$ and $\mathbb R$ are the sets of integers and real numbers). The LLL algorithm is a central algorithm to manipulate lattice bases. It takes as input a basis of a Euclidean lattice, and, within a polynomial number of operations, it outputs another basis of the same lattice but consisting of rather short vectors.
  • Le 10 décembre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Développeurs LFANT IMB
    Hacking session

  • Le 10 décembre 2019 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 2
    Développeurs LFANT IMB
    Hacking session

    Afficher 2023 - 2022 - 2021 - 2020 - 2019 - 2018 - 2017 - 2016 - 2015 - antérieurs