IMB > Recherche > Séminaires

Séminaire Théorie des Nombres

Responsables : Elena Berardini, Léo Poyeton.

  • Le 24 mai 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Maria Montanucci (Technical University Copenaghen)
    Algebraic curves over finite fields: rational points and birational invariants

    Algebraic curves over a finite field $\mathbb{F}_q$ have been a source of great fascination, ever since the seminal work of Hasse and Weil in the 1930s and 1940s. Many fruitful ideas have arisen out of this area, where number theory and algebraic geometry meet, and many applications of the theory of algebraic curves have been discovered during the last decades. 

    A very important example of such application was provided in 1977-1982 by Goppa, who found a way to use algebraic curves in coding theory. The key point of Goppa's construction is that the code parameters are essentially expressed in terms of the features of the curve, such as the number $N_q$ of $\mathbb{F}_q$-rational points and the genus $g$. In this light, Goppa codes with good parameters are constructed from curves with large $N_q$ with respect to their genus $g$.

    Given a smooth projective, algebraic curve of genus $g$ over $\mathbb{F}_q$, an upper bound for $N_q$ is a corollary to the celebrated Hasse-Weil Theorem,

    $$N_q \leq q+ 1 + 2g\sqrt{q}.$$

    Curves attaining this bound are called $\mathbb{F}_q$-maximal. The Hermitian curve is a key example of an $\mathbb{F}_q$-maximal curve, as it is the unique curve, up to isomorphism, attaining the maximum possible genus of an $\mathbb{F}_q$-maximal curve. 

    It is a result commonly attributed to Serre that any curve which is $\mathbb{F}_q$-covered by an $\mathbb{F}_q$-maximal curve is still $\mathbb{F}_q$-maximal. In particular, quotient curves of $\mathbb{F}_q$-maximal curves are $\mathbb{F}_q$-maximal. Many examples of $\mathbb{F}_q$-maximal curves have been constructed as quotient curves of the Hermitian curve by choosing a subgroup of its very large automorphism group.

    It is a challenging problem to construct maximal curves that cannot be obtained in this way, as well as to construct maximal curves with many automorphisms (in order to use the machinery described above). A natural question arises also: given two maximal curves over the same finite field, how can one decide whether they are isomorphic or not? A way to try to give an answer to this question is to look at the birational invariants of the two curves, that is, their properties that are invariant under isomorphism. 

    In this talk, we will describe our main contributions to the theory of maximal curves over finite fields and their applications to coding theory. In relation with the question described before, during the talk, the behaviour of the birational invariant of maximal curves will also be discussed.


  • Le 31 mai 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Marsault Chabat Université Franche Comté
    Théorie d'Iwasawa pour GSp(4)

    La conjecture de Birch et Swinnerton-Dyer prédit un lien entre les points rationnels d'une variété abélienne et les valeurs spéciales de sa fonction L. Cette conjecture est réputée difficile, nous commencerons donc par voire comment l'attaquer à l'aide d'une conjecture intermédiaire où l'on se focalise en un nombre premier $p$. Ensuite, nous verrons comment dans le cas des surfaces abéliennes on peut obtenir une preuve de cette conjecture (la conjecture intermédiaire) en faisant varier $p$-adiquement une classe de cohomologie galoisienne obtenue à partir de la cohomologie de la variété de Shimura de GSp(4).


  • Le 7 juin 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Stefano Morra LAGA (Paris 13)
    Un modèle local pour les représentations potentiellement Barsotti–Tate
    Les anneaux de déformation potentiellement Barsotti–Tate sont un outil essentiel pour l’obtention de résultats profonds en arithmétique, comme la conjecture de Shimura–Taniyama–Weil ou la conjecture de Breuil–Mézard. Néanmoins leur géométrie n’est pas encore bien comprise, et présente de comportement variés avec la parution de points irréguliers ou non-normaux (comme montré par des exemples et conjectures de Caruso–David–Mézard). Dans cet exposé nous discuterons comment les champs de modules de Breuil–Kisin peuvent être utilisés pour décrire la géométrie des champs des représentations potentiellement et modérément Barsotti–Tate (en rang 2, pour des extension non ramifiées de $\mathbf{Q}_p$), en utilisant la théorie des modèles locaux des groupes des lacets en caractéristique mixte. L’outil technique principal est une analyse de la p-torsion d’un complexe tangent pour relever des cartes affines pour des images schématiques entre champs de Breuil–Kisin et des représentations Galoisiennes. Avec ce procédé, nous obtenons un algorithme pour calculer des présentations explicites des anneaux de déformation potentiellement modérément Barsotti–Tate pour les représentations Galoisiennes de dimension 2 pour des extensions non-ramifiées de $\mathbf{Q}_p$. Ceci est un travail en commun avec B. Le Hung et A. Mézard.
  • Le 14 juin 2024 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de conférences
    Salim Rostam Université de Tours
    TBA
    TBA

    Les anciens séminaires