IMB > Recherche > Séminaires

Séminaire Théorie des Nombres

Responsables : Elena Berardini, Léo Poyeton.

  • Le 11 janvier 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Giulia Battiston Heidelberg
    A Galois descent for inseparable field extensions..
    Let L/K be a Galois separable field extension, then classical Galois descent theory describes algebraic objects over K, such as for example K-varieties, as being equivalent to algebraic objects over L endowed with a $Gal(L/K)$-action which is $\sigma$-linear. If L/K is not separable, though, such a theory does not apply for the simple reason that the field of $Gal(L/K)$-invariants is strictly bigger than K. We will present how this inconvenient can be bypassed using the automorphism group of truncated polynomials over L and hence obtaining a Galois descent theory for inseparable extensions.
  • Le 17 janvier 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Stephen Lichtenbaum Brown University
    Sans titre

  • Le 18 janvier 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Dustin Clausen Bonn
    K-theory, TC-theory, and Artin reciprocity..
    I will give an introduction to K-theory and TC-theory, then explain how some very basic properties of these theories can be used to give a quick proof of the Artin reciprocity law for function fields. Afterwards I'll say something about the extra topological ingredient required to handle the number field case.
  • Le 25 janvier 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Yohan Brunebarbe IMB
    Dans quelle mesure une variété abélienne est-elle déterminée par sa p-torsion ?..
    Étant donnés un corps k et un nombre premier p "assez grand", dans quelle mesure une variété abélienne définie sur k est-elle déterminée à isogénie près par sa p-torsion vue comme module galoisien ? Dans mon exposé, je m'intéresserai plus particulièrement au cas où k est un corps de fonctions de caractéristique zéro, en m'appuyant sur des résultats d'hyperbolicité pour les espaces de modules de variétés abéliennes que j'expliquerai.
  • Le 1er février 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Anne de Roton Université de Lorraine
    Ensembles de réels de petite somme
    On s'intéresse aux ensembles $A$ et $B$ de réels pour lesquels l'ensemble somme $A+B$ est de petite taille. On sait que la mesure de $A+B$ est de mesure au moins la somme des mesures de $A$ et de $B$ et que l'on a égalité lorsque $A$ et $B$ sont des intervalles. En considérant les diamètres de $A$ et $B$, I. Ruzsa a cependant amélioré cette minoration. Nous expliquerons son travail et nous décrirons les ensembles $A$ et $B$ pour lesquels la taille de $A+B$ est proche de ce minorant. La considération de ce même problème dans le cercle permet d'améliorer les minorations pour les ensembles de réels et nous nous intéresserons donc aussi aux ensembles du cercle $\mathbb{R}/ \mathbb{Z}$. Une partie de ce travail a été réalisé en collaboration avec Pablo Candela.
  • Le 8 février 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Arnaud Plessis Université de Caen
    Points de petite hauteur dans certains groupes algébriques
    Dans cet exposé, on s'intéressera aux points de petite hauteur dans certains groupes algébriques commutatifs. Dans un premier temps, on considérera des extensions infinies L de nombres algébriques telle que $\mathbb{G}_m(L)\(\mathbb{G}_m)_{tors}$ ne possède pas de points de petite hauteur. Ensuite, on s'intéressera à une conjecture récente de Rémond. Cette conjecture prédit que sur une variété abélienne ou sur une puissance du groupe multiplicatif, les points de petite hauteur, à coordonnées dans $\mathbb{Q}(\Gamma)$, avec $\Gamma$ un groupe de rang fini, se trouvent dans le saturé de $\Gamma$. Enfin, on motivera le fait que dans cette conjecture, on puisse y inclure les variétés semi-abéliennes isotriviales. Cela nous permettra de relier entre eux plusieurs résultats déjà présents dans la littérature.
  • Le 15 février 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Werner Bley
    On the square root of the inverse different
    Let $L/K$ be an odd degree Galois extension of number fields and set $G := \mathrm{Gal}(L/K)$. Let $A_{L/K}$ denote the square root of the inverse different. By a result of Erez $A_{L/K}$ is projective as a $ZG$-module if and only if $L/K$ is at most weakly ramified, i.e., for each ramified prime the second ramification subgroup (in lower numbering) is trivial. For such a weakly ramified odd degree Galois extension we define and study a canonical invariant in the relative algebraic $K$-group $K_0(ZG, QG)$ which projects to the class of $A_{L/K}$ in $K_0(ZG)$. Our results shed new light on a conjecture of Vinatier which predicts that $A_{L/K}$ is always a free $ZG$-module. This is joint work with David Burns and Carl Hahn.
  • Le 1er mars 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    -
    ** vacances **

  • Le 8 mars 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Rodolphe Richard Cambridge
    Vers une conjecture d'André-Oort "arithmétique"
    Nous présentons une généralisation de la conjecture d'André-Oort qui n'est pas trivialement fausse. En effet, nous la démontrons dans deux cas non triviaux (l'un, supposant GRH, avec B. Edixhoven). Tout cela en lien, et motivé par, de récents développements en équidistribution.
  • Le 15 mars 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Victoria Cantoral Farfán ICTP
    Sur une conjecture algébrique de Sato-Tate
    La conjecture de Sato-Tate, énoncée pour les courbes elliptiques sans multiplication complexe, prédit l'équidistribution de la trace de Frobenius par rapport à la mesure de Sato-Tate, donnée par le poussé en avant de la mesure de Haar sur SU(2). Nous aimerions travailler sur une question analogue pour les variétés abéliennes de dimension g > 1, appelée conjecture généralisée de Sato-Tate. En 1966, Serre présente pour la première fois des liens remarquables entre les conjectures de Mumford-Tate et de Sato-Tate et introduit la conjecture algébrique de Sato-Tate. L'objectif principal de ce séminaire est de présenter de nouveaux résultats allant dans le sens de la conjecture algébrique de Sato-Tate, en s'appuyant sur les travaux de Serre, Kedlaya et Banaszak.
  • Le 22 mars 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Katharina Hübner
    The adic tame site
    For a scheme of characteristic $p > 0$ (or mixed characteristic) étale cohomology with $p$-torsion coefficients does not behave very well: Smooth base change, cohomological purity, Poincaré duality, just to name a few, only hold for coefficients prime to the characteristic. The reason for this failure is the existence of wild ramification. This talk presents a modification of the étale topology that does not admit for wild ramification, called the tame site. For coefficients away from the characteristic the étale and tame cohomology groups are isomorphic and for $p$-torsion coefficients they are better behaved than the étale cohomology groups.
  • Le 29 mars 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Jürg Kramer Humboldt Universität Berlin
    On formal Fourier-Jacobi expansions
    It is a classical fact that Siegel modular forms possess so-called Fourier-Jacobi expansions. The question then arises, given such an expansion, when does it originate from a Siegel modular form. In the complex setting, J. Bruinier and M. Raum gave a necessary and sufficient criterion when Fourier-Jacobi expansions give rise to Siegel modular forms. In our talk we would like to revisit this problem however using the arithmetic compactifications of the moduli space of principally polarized abelian varieties established by G. Faltings and C.-L. Chai. In particular, this will allow us to generalize the result of J. Bruinier and M. Raum to the arithmetic setting.
  • Le 5 avril 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Florian Luca University of the Witwatersrand/University of Ostrava
    $Y$-coordinates of Pell equations in binary recurrences
    Let $d>1$ be an integer which is not a square and $(X_n,Y_n)$ be the $n$th solution of the Pell equation $X^2-dY^2=\pm 1$. Given an interesting set of positive integers $U$, we ask how many positive integer solutions $n$ can the equation $Y_n\in U$ have. We show that under mild assumptions on $U$ (for example, when $1\in U$ and $U$ contains infinitely many even integers), then the equation $Y_n\in U$ has two solutions $n$ for infinitely many $d$. We show that this is best possible whenever $U$ is the set of values of a binary recurrent sequence $\{u_m\}_{m\ge 1}$ with real roots and $d$ is large enough (with respect to $U$). We also show that for the particular case when $u_m=2^m-1$, the equation $Y_n=2^m-1$ has at most two positive integer solutions $(n,m)$ for all $d$. The proofs use linear forms in logarithms. This is joint work with Bernadette Faye.
  • Le 12 avril 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    César Martinez Metzmeier Universität Regensburg
    Torsion dans des sous-variétés de variétés abéliennes
    Soient A une variété abélienne et V une sous-variété de A. On se propose l'étude des sous-variétés de torsion de V. La finitude du nombre de sous-variétés de torsion maximales était conjecturé par Lang et prouvé par Raynaud. Dans une des évolutions postérieures de cette question, se trouve celle de savoir comment se comporte le nombre de sous-variétés de torsion maximales. Dans cet exposé, on présentera les progrès faites dans cette ligne avec Aurélien Galateau. On déterminera complètement la dependence en V et les avances pour la dependence en A du nombre de sous-variétés de torsion dans V.
  • Le 19 avril 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Diego Izquierdo MPIM
    Espaces homogènes, K-théorie algébrique et dimension cohomologique des corps
    En 1986, Kato et Kuzumaki ont formulé des conjectures cherchant à donner une caractérisation diophantienne de la dimension cohomologique des corps via la K-théorie algébrique et les points rationnels sur les hypersurfaces projectives de petit degré. Ces conjectures sont fausses en toute généralité. Dans cet exposé, on démontrera une variante des conjectures de Kato et Kuzumaki dans laquelle les hypersurfaces projectives de petit degré sont remplacées par des espaces homogènes. Il s'agit d'un travail en collaboration avec Giancarlo Lucchini Arteche.
  • Le 3 mai 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Joao Pedro Dos Santos IMJ
    Torseurs finis au-dessus des schémas sur un trait
    L'étude des revêtements non ramifiés est une activité classique ayant lieu dans plusieurs contextes: topologique, analytique, algébrique ou arithmétique. Dans cet exposé je parlerai d'une théorie proposée par moi même et P. H. Hai qui étudie les $G$-torseurs finis (les revêtements) au-dessus d'un schéma propre sur un anneau de valuation discrète $A$.   Je commencerai par rappeler la théorie du groupe fondamental étale. Ensuite, je passerai à la théorie du schéma en groupes fondamental de Nori---qui classifie les torseurs finis sur des variétés algébriques---dans sa version Tannakienne (héritière du Théorème de Narasimhan-Seshadri), sa version “filtrante” et sa version “trivialisable”.   J'introduirai la question analogue pour des schémas définis sur $A$  et je parlerai de la solution (filtrante) proposée par Gasbarri et Antei-Emsalem-Gasbarri. Comment l'alternative “trivialisable” permet d'identifier une catégorie Tannakienne de modules cohérents sera traité après et je montrerai que le groupe attaché à cette dernière classifie en effet les torseurs finis.  Pour terminer je commenterai à propos d'autres propriétés qu'une telle approche permet de dégager: relation avec la fibre spéciale, finitude de certains groupes structurels et caractérisation “fibre-à-fibre”.
  • Le 10 mai 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Debargha Banerjee Pune
    Eisenstein cycles and Manin Drinfeld property
    For a congruence subgroup of $\operatorname{SL}_2(\mathbb{Z})$, a famous theorem of Manin-Drinfeld asserts that the cuspidal group is finite. We can give a criteria for finiteness of cuspidal subgroups for arbitrary subgroups of finite index by using rationality of Eisenstein cycles. In a joint work with Loic Merel.
  • Le 17 mai 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Roberto Gualdi IMB
    Vers un théorème de Bernstein-Kouchnirenko arithmétique
    Le théorème de Bernstein-Kouchnirenko permet de prédire le nombre de solutions, comptées avec multiplicité, d'un système d'équations polynomiales dans un tore. Dans cet exposé, je présenterai un cadre propice à une version arithmétique de ce résultat. Plus précisément, on verra comment la traduction combinatoire de la géomérie d'Arakelov des variétés toriques peut servir à donner des bornes supérieures pour la hauteur des solutions du système en question ; on montrera aussi, à travers des exemples, qu'une approche "en moyenne" du problème pourra se révéler plus fructueuse qu'un point de vue déterministe. Une partie de ce conte est un travail en cours avec M. Sombra et A. Yger.
  • Le 24 mai 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Satadal Ganguly ISI -Calcutta
    Polya-Vinogradov inequality for representations of GL(n,F_p)
    The classical Polya-Vinogradov inequality gives a bound (roughly of size square root of $p$) on the sum of values of a Dirichlet character modulo $p$ along a segment which is independent of the length of the segment. The proof uses Fourier Analysis on finite abelian groups. Instead of Dirichlet characters which are nothing but characters of the mutiplicative group $\mathrm{GL}(1, \mathbb{F}_p)$ of invertible elements in $\mathbb{F}_p$, the finite field of p elements, we can work with representations of the group $\mathrm{GL}(n, \mathbb{F}_p)$ for $n >1$ and try to generalise the result. I shall describe my joint work with C.S. Rajan on this question and our result for the case $n=2$. As an application, we will describe a matrix analogue of the problem of estimating the least primitive root modulo a prime.
  • Le 31 mai 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    ***
    relâche

  • Le 7 juin 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Daniel Daigle Université d'Ottawa
    Dérivations localement nilpotentes et rationalité des variétés
    Soit $X$ une variété algébrique affine sur un corps k de caractéristique zéro et soit $B = k[X]$ l'algèbre des fonctions régulières sur $X$. Si $B$ admet “beaucoup” de dérivations localement nilpotentes $D : B —> B$, alors s'ensuit-il que $X$ est une variété rationnelle ? Je parlerai de l'histoire de cette question et de quelques résultats récents.
  • Le 21 juin 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Grand Amphi de math - bât A33
    -
    "Iwasawa 2019"

  • Le 20 septembre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Andrea Fanelli IMB
    Pathologies en caractéristique positive: torsion exotique pour 3-variétés de Fano
    Dans cet exposé, je vais introduire la notion de quotient unipotent fini maximal pour un schéma en groupe sur un corps de caractéristique $p>0$. Pour le schéma de Picard, ce quotient est la “torsion exotique''. Je vais présenter des exemples de 3-variétés de Fano intègres avec torsion exotique : en utilisant la théorie des surfaces de Enriques exceptionnelles. Il s'agit d'un travail en collaboration avec Stefan Schröer.
  • Le 27 septembre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Gaëtan Chenevier Orsay
    Dimension des espaces de formes de Siegel pour $Sp_{2g}(\mathbf{Z})$
    J'expliquerai une méthode pour calculer "sans trop se fatiguer" la dimension exacte des espaces de formes modulaires de Siegel paraboliques en niveau $Sp_{2g}(\mathbf{Z})$ et poids $k_1>=k_2>=...>=k_g>g$ arbitraires, qui fonctionne pour l'instant jusqu'à $g=8$ (record battu). Travail en commun avec Olivier Taïbi.
  • Le 4 octobre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Jehanne Dousse Institut Camille Jordan
    Les identités de Capparelli et de Primc
    Une partition d'un entier n est une suite décroissante d'entiers dont la somme est n. Une identité de partitions est un théorème de la forme "pour tout entier n, le nombre de partitions de n satisfaisant certaines conditions est égal au nombre de partitions de n satisfaisant d'autres conditions". Dans les années 80, Lepowsky et Wilson ont établi un lien entre les identités de partitions de Rogers-Ramanujan et la théorie des représentations. D'autres théoriciens des représentations ont ensuite étendu leur méthode, donnant lieu à des nouvelles identités jusqu'alors inconnues des combinatoriciens et théoriciens des nombres, telles que l'identité de Capparelli et celle de Primc. Bien que ces deux identités ne semblent pas liées du point de vue de la théorie des représentations, nous montrerons que l'identité de Capparelli peut être déduite combinatoirement de celle de Primc.
  • Le 11 octobre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 2
    Pierre-Yves Bienvenu Institut Camille Jordan
    Densité d'ensemble de sommes dans les entiers
    Pour un ensemble A d'entiers, on note 2A l'ensemble des sommes de la forme a+b avec a et b dans A. On note d(A) la densité asymptotique de A. Le théorème de Kneser affirme que si la densité de 2A est inférieure au double de celle de A, alors A et surtout 2A satisfont des contraintes structurelles fortes, qui imposent notamment à la densité de 2A d'être rationnelle. La question se pose de savoir si en dehors de cette contrainte, le couple (d(A), d(2A)) est libre de prendre n'importe quelles valeurs. Nous montrons que oui. Plus généralement, nous étudions les densités des ensembles sommes itérés et déterminons partiellement les valeurs possibles des k-uplets (d(A), d(2A), d(3A), …, d(kA)). Travail réalisé avec François Hennecart.
  • Le 18 octobre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Razvan Barbulescu (IMB)\, travail en commun avec Sudarshan Shinde (Imj-prg)
    Une classification complète des familles de courbes elliptiques adaptées à l'algorithme ECM
    Le programme B de Mazur s'énonce comme suit : étant donné un sous-groupe de congruence de $\Gamma\subset \mathrm{GL}_2(\hat{\mathbb Z})$, calculer la liste (si l'ensemble est fini) ou la paramétrisation (si l'ensemble est infini) des courbes elliptiques ayant l'image de la représentation galoisienne contenue dans un groupe conjuguée à $\Gamma$. La méthode de factorisation de Lenstra (1985) requiert la recherche de familles de courbes elliptiques non CM qui ont des représentations dans $\mathrm{GL}_2(\mathbb{Z}_p)$ non-surjectives. Pour cela nous allons faire une brève revue des algorithmes de factorisation et nous allons déduire qu'il s'agit d'une application directe du programme B de Mazur. Une série de travaux récents par Rouse, Zureick-Brown, Sutherland, Zywina et Morrow ont fait des avancées sur le programme. Nous allons rappeler la méthode de Shimura (1971) pour calculer $X_\Gamma$ quand $-\mathrm{I}\in\Gamma$ et $\det\Gamma=\hat{\mathbb Z}^*$. Nous notons la surprenante efficacité de la méthode de Chabauty et de la méthode étale pour prouver qu'on possède la liste complète d'une équation diopha de genre $g\geq 2$ dans le cas particulier des courbes modulaires. Nous finirons par quelques problèmes ouverts relevant de l'algorithmique et de la théorie analytique des nombres.
  • Le 25 octobre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Relâche
    Sans titre

  • Le 8 novembre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Pas de séminaire : soutenance HDR G. Castagnos
    Sans titre

  • Le 15 novembre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Pas de séminaire : journée en l'honneur de Jacques Martinet
    Sans titre
    Inscription (gratuite) en suivant ce lien.
  • Le 22 novembre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Pierre Le Boudec Bâle
    Le principe de Hasse pour les équations diophantiennes aléatoires
    Le dixième problème de Hilbert pour le corps des nombres rationnels pose la question de l'existence d'un algorithme décidant si une équation diophantienne homogène possède une solution en nombres rationnels non tous nuls. Ce problème est toujours ouvert. Fixons le degré $d$ et le nombre d'inconnues $m$ des équations considérées. Poonen et Voloch ont conjecturé que si $m>d$ et si les équations diophantiennes sont choisies aléatoirement alors, avec probabilité $1$, l'algorithme vérifiant l'existence de solutions non triviales partout localement devrait donner la réponse exacte à la question de l'existence d'une solution rationnelle non triviale. Je décrirai un travail récent en commun avec Tim Browning et Will Sawin dans lequel nous utilisons des méthodes de géométrie des nombres pour établir cette conjecture pour presque toutes les valeurs de $d$ et $m$.
  • Le 29 novembre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Alexandre Maksoud Université du Luxembourg
    Théorie d'Iwasawa des représentations d'Artin et des formes modulaires de poids 1
    La théorie d'Iwasawa s'intéresse à la construction d'un analogue p-adique analytique de la fonction L complexe d'un motif M, et à son interprétation en terme de l'arithmétique de M. Bien que de nature p-adique, elle a des applications à des problèmes globaux tels que la conjecture de Birch et Swinnerton-Dyer. Nous discutons ici du cas des motifs attachés à des représentations d'Artin sur Q, et plus particulièrement à la représentation de Deligne-Serre d'une forme modulaire primitive de poids 1.
  • Le 6 décembre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Ivan Fesenko Nottingham
    Residue characteristic 2 and effective estimates in IUT, and applications
    I will talk about a recent work of 5 coauthors: Sh. Mochizuki, W. Porowski, A. Minamide, Yu. Hoshi and I. This work slightly extends the IUT theory of Shinichi Mochizuki (for an updated short description of the study of IUT see https://www.maths.nottingham.ac.uk/plp/pmzibf/rapg.pdf). It incorporates the residue characteristic at $p=2$. Using computations of Sijsling (2019) of $4$ special cases of $j$-invariants, it then produces effective estimates of constants. This leads to the proof of effective form of one of $abc$ inequalities. In applications of this form of $abc$ inequality to diophantine equations one can use two additional tools: bounds from below on their solutions and some computer verifications. This opens a vast area of further developments. In the particular case of FLT, using bounds from below obtained by Inkeri (1987) and computations by Coppersmith (1990) and Hart-Harvey-Ong (2016), this recent work proves the first case of FLT for all prime exponents and the second case of FLT for all prime exponents except those between $2^{31}$ and $9.6\times 10^{13}$.
  • Le 13 décembre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Dimitrios Chatzakos IMB
    Quantum ergodicity and the Prime geodesic theorem on 3-manifolds
    Quantum Ergodicity results have their origin in mathematical physics. The Quantum Unique Ergodicity of Rudnick and Sarnak is now resolved for the case of arithmetic Riemann surfaces by Lindenstrauss and Soundararajan. Prime geodesic theorems describe the asymptotic behaviour of primitive closed geodesics on hyperbolic manifolds and can be viewed as geometric analogues of the Prime number theorem. In this talk I will describe some of our recent work on these two problems for arithmetic 3-manifolds. Using triple product formulas and the Kuznetsov trace formula, the study of these two problems can be reduced to subconvexity estimates for related L-functions.
  • Le 20 décembre 2019 à 14:00
  • Séminaire de Théorie des Nombres
    Relâche

    Les anciens séminaires