next up previous
Next: corrélogramme, corrélogramme partielle, corrélogramme Up: TP2 : Simulation et Previous: Simulation d'un processus AR(p)

Simulation d'un processus MA(q) et ARIMA(p,d,q)

  1. Simuler le processus suivant

    \begin{displaymath}
X_t = (1-2.4B+0.8B^2)\varepsilon _t  \mbox{o\\lq u}   \varepsilon \sim N(0,0.2^2)
\end{displaymath}

    Corrigé

     
    title1 'Simulated MA(2)';
    data a;
        a1 = 0; a2=0;
        do i = -50 to 500;
           a = 0.2*rannor( 32565 );
           u = a - 2.4*a1 + 0.8*a2;
           if i > 0 then output;         
           a2 = a1; a1 = a;
        end;
      run;
    symbol1 interpol=join color=black value=none;
    proc gplot data=a;
       plot u*i;
    run;
    

  2. Simuler un processus tel que

    \begin{displaymath}
X_t-X_{t-1} = (1-2.4B+0.8B^2)\varepsilon _t
  \mbox{o\\lq u}   \varepsilon \sim N(0,0.2^2)
\end{displaymath}

    Corrigé

     
    title1 'Simulated ARIMA(0,1,2)';
    data a;
        u1=0; a1 = 0; a2=0;
        do i = -50 to 500;
           a = 0.2*rannor( 32565 );
           u = u1 + a - 2.4*a1 + 0.8*a2;
           if i > 0 then output;         
           u1 = u; a2 = a1; a1 = a;
        end;
      run;
      symbol1 interpol=join color=black value=none;
    proc gplot data=a;
       plot u*i;
    run;
    

  3. Soit \bgroup\color{blue}$X_t$\egroup un processus ARIMA(0,1,2) simulé par la méthode ci-dessus. Comment utiliser ce resultat pour simuler le processus \bgroup\color{blue}$Y_t \stackrel{\triangle}{=}X_t-X_{t-1}$\egroup.

    Corrigé Ajouter à la suite de la question précedente

     
    data a;
       set a;
       udif = dif(u);
    run;
    
    title1 "Transformed Series";
    proc gplot data=a;
       plot udif*i;
    run;
    quit;
    
    Normalement on obtient un processus stationnaire.

  4. Simuler le processus ARIMA(2,1,2) suivant

    \begin{displaymath}\bgroup\color{blue}
\displaystyle
(1-\frac56 B+ \frac16 B^...
...epsilon _t
  \mbox{o\\lq u}   \varepsilon \sim N(0,0.2^2)
\egroup\end{displaymath}

    Et calculer et tracer le processus \bgroup\color{blue}$Y_t=(1-B)X_t$\egroup

    Corrigé Nous avons

    \begin{displaymath}\bgroup\color{blue}(1-\frac56 B+ \frac16 B^2) (1-B) = 1-\frac{11}{6}B + B^2 -\frac16 B^3\egroup\end{displaymath}

    donc \bgroup\color{blue}$X_t = \frac{11}{6}X_{t-1} - X_{t-2} +\frac16 X_{t-3} $\egroup
     
    title1 'Simulated ARIMA(2,1,2)';
    data a;
        u1=0; u2=0; u3=0.0; a1 = 0; a2=0;
        do i = -50 to 500;
           a = 0.2*rannor( 32565 );
           u = (11.0/6)*u1 - u2 + (1/6)*u3 + a - 2.4*a1 + 0.8*a2;
           if i > 0 then output;         
           u3 = u2; u2 = u1; u1 = u; a2 = a1; a1 = a;
        end;
      run;
    symbol1 interpol=join color=black value=none;
    proc gplot data=a;
       plot u*i;
    run;
    
    data a;
       set a;
       udif = dif(u);
    run;
    
    title1 "Transformed Series";
    proc gplot data=a;
       plot udif*i;
    run;
    quit;
    

  5. Modifier la condition initiale de \bgroup\color{blue}$(X_{-1}, X_{-2}, X_{-3}, \varepsilon_{-1},\varepsilon _{-2})$\egroup. Etudier la sensibilité.


next up previous
Next: corrélogramme, corrélogramme partielle, corrélogramme Up: TP2 : Simulation et Previous: Simulation d'un processus AR(p)
Huilong Zhang 2009-12-16