IMB > Informations générales > Agendas

Evénements passés

  • Le 7 janvier 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    J. Sok
    Dirac operators with magnetic links
    We investigate the zero modes for three-dimensional Dirac operators with singular magnetic fields supported on links. They can be seen as a generalization of Aharonov-Bohm solenoids, in particular they exhibit the same $2\pi$-periodicity of the fluxes carried by the field lines. The occurrence of zero modes is studied through the spectral flow of loops of such singular operators: it is generically non-zero and depends on the geometry of the field lines (not only their topology). This a joint work with Fabian Portmann and Jan Philip Solovej.
  • Le 9 janvier 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Cyrus Mostajeran Cambridge University
    Geometric Thinking in Engineering and Applied Sciences
    Geometry occupies a uniquely illustrious place in the history of science. Many critical and celebrated advances in physics and various fields of mathematics have been achieved by viewing problems through a geometric lens. Recent years have witnessed a growing interest in the application of differential geometry to problems arising in engineering. In particular, the exploitation of symmetries and geometric invariance has led to great advances in fields such as optimisation, signal processing, statistical learning, medical imaging, material science, and inertial navigation and estimation in nonlinear automatic control. In this talk, I will review several topics in the engineering and applied sciences from my own research that are shaped by geometric thinking. Examples include consensus theory and monotone dynamical systems, statistics and optimisation in nonlinear spaces, as well as topographic mechanics and material design.
  • Le 9 janvier 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Rémi Abgrall
    [Séminaire CSM]

  • Le 10 janvier 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Jean-Marc Couveignes IMB
    Décrire et compter les corps de nombres
    Il existe plusieurs façons de décrire un corps de nombres : polynôme minimal d'un élément primitif, table de multiplication d'une $\mathbf{Q}$-base, traces d'une famille d'éléments, etc. Une description synthétique des corps de nombres permet de construire et donc de compter les corps de nombres de degré donné et de discriminant borné. Des tables construites par Cohen, Diaz et Olivier et une conjecture de Linnik suggèrent que le nombre de classes d'isomorphisme de corps de nombres de degré $n$ et de discriminant inférieur ou égal à $H$ est équivalent à $c(n)H$ quand $n>1$ est fixé et $H$ tend vers l'infini. Cette estimation est prouvée pour n=3 par Davenport et Heilbronn et pour $n=4,5$ par Bhargava. Pour $n$ quelconque Schmidt a prouvé une majoration de la forme $c(n)H^{(n+2)/4}$ à l'aide du théorème de Minkowski. Sa preuve est très effective et a permis de construire des tables. Ellenberg et Venkatesh ont montré que l'exposant de H est asymptotiquement moins que sous-exponentiel en $\log (n)$. Je rappellerai ce contexte et montrerai que l'exposant est moins que $O(\log(n)^3)$.
  • Le 14 janvier 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Abdoulaye Maiga IMB
    Canonical Lift of Genus 2 Curves
    Let $\mathcal{A}/\mathbb{F}_q$ (with $q=p^n$) be an ordinary abelian variety, a classical result due to Lubin, Serre and Tate says that there exists a unique abelian variety $\tilde{\mathcal{A}}$ over $\mathbb{Z}_q$ such that the modulo $p$ reduction of $\tilde{\mathcal{A}}$ is $\mathcal{A}$ and $End(\tilde{\mathcal{A}})\cong End(\mathcal{A})$ as a ring. In 2000 T.Satoh introduced a point-counting algorithm on elliptic curves over $\mathbb{F}_q$ based on canonical lift. In fact the action of the lifted Verschiebung on the tangent space gives Frobenius eigenvalues and hence the characteristic polynomial of the ordinary elliptic curves over $\mathbb{F}_q$. We propose to extend the canonical lift algorithm introduced by T.Satoh to genus 2 curves over finite fields, using the modular polynomials in dimension 2. We first prove the Kronecker condition in dimension 2 case and then succeed to lift the endomorphism ring of $\mathcal{A}$ in dimension 2 case using a general lift algorithm of a $p$-torsion group of an ordinary abelian variety. These results provide an algorithm to compute the characteristic polynomial of a genus 2 curves in quasi-quadratic time complexity.
  • Le 14 janvier 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    E. Russ
    Espaces de Hardy sur des variétés riemanniennes dont la courbure est à décroissance quadratique
    Soit $(M,g)$ une variété Riemannienne complète. On suppose que la courbure de Ricci de $M$ décroit quadratiquement et que le volume des boules de $M$ est à croissance au moins quadratique. On montre que les espaces de Hardy de $1$-formes différentielles sur $M$, coincident avec les espaces $L^p$ pour $12$ est relié à la croissance du volume des boules. L'intervalle de $p$ est optimal. Le résultat est valable notamment quand $M$ a un nombre fini de bouts euclidiens. Il s'agit d'un travail en collaboration avec Baptiste Devyver.
  • Le 16 janvier 2020 à 09:30
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Jeunes Chercheurs IOP
    Session spéciale

  • Le 16 janvier 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Masimba Nemaire\, IMB\, Université de Bordeaux et FACTAS\, INRIA Sophia-Antipolis
    Extraction of dipolar current sources in EEG.
    We wish to extract dipolar current sources in brain based on the electrical potential measured on the skull as is done in EEG. We formulate the problem for a three-layer spherical head model. We characterise silent sources(current sources that do not produce an electrical potential outside) for general source distributions and show that for dipolar sources the only silent source is the zero dipolar source. This leads to a unique extraction of dipolar current sources uniquely from the measured electrical potential. We discuss possible algorithms for the extraction these dipolar current sources. The presentation will be mainly based on the work I did for my master thesis and then I will say about what we hope to achieve during the thesis mainly generalising the sparsity to 1 purely unrectifiable supports and attempts at solving the critical point equation.
  • Le 17 janvier 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Amine Marrakchi ENS Lyon
    Transition de phase pour des groupes agissant sur des arbres
    A chaque action de groupe par isométries affines sur un espace de Hilbert, il est possible d'associer une action non-singulière sur un espace de probabilité Gaussien dont les propriétés ergodiques dépendent de façon subtile de la géométrie de l'action originale. En particulier, ces actions exhibent un fascinant phénomène de transition de phase. Dans cet exposé, j'expliquerai un modèle discrétisé et simplifié de ces actions Gaussiennes dans le cas particulier des groupes agissant sur des arbres et je donnerai une description précise de la transition de phase en la reliant à la théorie des marches aléatoires branchantes ainsi qu'à la théorie de Patterson-Sullivan. Travail en commun avec Yuki Arano et Yusuke Isono.
  • Le 17 janvier 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Stephen Lichtenbaum Brown University
    Reporté

  • Le 17 janvier 2020 à 16:30
  • Séminaire Lambda
    Salle de conférence
    MAIGA Abdoulaye IMB - Cheikh Anta Diop University
    Canonical Lift of Genus 2 Curve
    Cet exposé donne d'abord un aperçu des méthodes p-adiques qui calculent les polynômes caractéristiques des courbes elliptiques sur des corps finis. Nous présentons ensuite les complexités pour étendre ces algorithmes aux courbes de genre 2 sur des corps finis : nous proposons d'étendre l'algorithme de levage canonique introduit par T. Satoh aux courbes de genre 2 sur corps finis, en utilisant les polynômes modulaires en dimension 2.
  • Le 17 janvier 2020 à 17:00
  • Séminaire des doctorant·es
    Salle 2
    Abdoulaye Maiga
    Canonical Lift of Genus 2 Curves
    This talk first gives a survey of the $p$-adic methods that compute the characteristic polynomials of elliptic curves over finite fields. We then present the complexities to extend those algorithms to genus 2 curves over finite fields : we propose to extend the canonical lift algorithm introduced by T.Satoh to genus 2 curves over finite fields, using the modular polynomials in dimension 2.
  • Le 21 janvier 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    S. Ervedoza
    Observabilité des ondes dans un anneau pour des conditions aux bords variées.
    Dans cet exposé, je proposerai une étude des propriétés d'observabilité de l'équation des ondes dans une couronne lorsque la condition sur le cercle intérieur est une condition dynamique assez générale. En particulier, nous donnerons des conditions suffisantes sur la condition dynamique garantissant l'observabilité du modèle considéré. Pour cela, nous développerons une approche basée sur des estimées de résolvante appropriées et des techniques de multiplicateurs et de factorisation d'opérateurs. Il s'agit d'un travail effectué en collaboration avec Lucie Baudouin, Jérémi Dardé et Alberto Mercado.
  • Le 23 janvier 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Antoine Deleforge INRIA Nancy\, Loria
    Processing Sounds with a Little Help from Echoes
    When a sound wave propagates from a source through a medium and is reflected on surfaces before reaching microphones, the measured signals consist of a mixture of the direct path signal with delayed and attenuated copies of itself. This phenomenon is commonly referred to as "echoes", or "reverberation", and is generally considered as a nuisance in audio signal processing. After a gentle introduction to relevant concepts in acoustics and signal processing, this seminar will present recent works showing how acoustic echoes can be blindly estimated from audio recordings, using either non-linear inverse techniques or machine learning. We will then show how the knowledge of such echoes can in fact help some audio signal processing tasks such as the separation, enhancement or localisation of sound sources.
  • Le 23 janvier 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Luc Deléaval\, LAMA\, Université Paris-Est-Marne
    Autour du théorème maximal de Hardy-Littlewood.

  • Le 23 janvier 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Jérôme Fehrenbach
    [Séminaire CSM] Tumor growth and mechanical behavior: coupling experiments and mathematical models
    Nous présenterons des travaux d'estimation de paramètres dans différents modèles de croissance tumorale prenant en compte les aspects mécaniques. Différents modèles sont envisagés selon l'échelle de temps considérée. Dans chaque cas des mesures expérimentales permettent de calibrer les paramètres du modèle. Ces travaux ont été réalisés dans le cadre du projet MIMMOSA.
  • Le 23 janvier 2020 à 16:00
  • Leçons de Mathématiques et d'Informatique d'Aujourd'hui
    Salle de Conférences
    Frédéric Bayart\, professeur\, Université Blaise Pascal Clermont-Ferrand
    Sujet : ""Le point de vue de Bohr des séries de Dirichlet".

  • Le 24 janvier 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Hui Xiao Université Bretagne Sud
    Asymptotique précise de grande déviation pour les produits de matrices aléatoires
    Soit (g_n) une séquence indépendante et identiquement distribuée d*d matrices réelles aléatoires. Considérons le produit G_n = g_n ...g_1. Pour les matrices inversibles et les matrices positives, nous établissons des développements asymptotiques de grande déviation de type Bahadur-Rao et Petrov pour le cocycle de la norme log |G_nx|, conjointement avec la chaîne Markov X_n^x = G_nx/|G_nx|, où x est un point de départ sur l'espace projectif. De plus, nous établissons également des résultats de grands écarts de type Bahadur-Rao et Petrov pour les entrées G_n^{i,j}. En particulier, nous obtenons le principe de grands écarts avec une fonction de taux explicite, ainsi en améliorant de manière significative les bornes de grands écarts établies récemment. Pour les preuves, une question très importante consiste à établir la propriété de régularité Hölder pour la mesure stationnaire pi_s correspondant à la chaîne de Markov X_n^x sous la mesure changée, qui présente un intérêt indépendant. En tant qu'applications, nous obtenons des théorèmes de limite locaux avec grandes déviations pour le cocycle de la norme log |G_nx| et le logarithme des entrées log|G_n^{i,j}|.
  • Le 24 janvier 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Oscar Rivero Salgado Barcelone
    Exceptional zeros, p-adic L-functions and Euler systems..
    Beginning in the 80s with the celebrated work of Mazur, Tate and Teitelbaum, the study of exceptional zeros for p-adic L-functions has become a very fruitful area in number theory. One example is the recent proof of Gross' conjecture, which crucially relies on the theory of p-adic deformations of modular forms. In this talk, we give a historical survey of several applications of the theory of exceptional zeros, which incudes certain cases of the p-adic Birch and Swinnerton-Dyer conjecture and the Gross--Stark conjectures. We connect this with a recent result obtained in a joint work with V.Rotger, and which can be seen as a Gross--Stark formula for the adjoint of a weight one modular form. Finally, we take a glance to the theory of exceptional zeros from the point of view of Euler systems, exploring some tantalizing connections between the analytic and the algebraic world.
  • Le 24 janvier 2020 à 16:00
  • Séminaire des doctorant·es
    Salle 2
    Robin Frot
    Non annulation de fonctions L en la valeur centrale
    Les fonctions L, qui sont définies comme prolongement analytique de séries de Dirichlet jouent un rôle important en théorie des nombres. On peut en effet relier divers objets (courbes elliptiques, formes automorphes, représentations galoisiennes) à travers leur fonction L. La compréhension de ces fonctions en la valeur centrale (centre de symétrie d'une équation fonctionnelle) est primordiale dans beaucoup de problèmes. Après avoir introduit la notion de fonctions L, nous verrons divers outils analytiques permettant de conclure à la non annulation de certaines d'entre elles.
  • Le 24 janvier 2020 à 16:30
  • Séminaire Lambda
    Salle de conférence
    FROT Robin Laboratoire Paul Painlevé\, Université de Lille
    Non annulation de fonctions L en la valeur centrale
    Les fonctions L, qui sont définies comme prolongement analytique de séries de Dirichlet jouent un rôle important en théorie des nombres. On peut en effet relier divers objets (courbes elliptiques, formes automorphes, représentations galoisiennes) à travers leur fonction L. La compréhension de ces fonctions en la valeur centrale (centre de symétrie d'une équation fonctionnelle) est primordiale dans beaucoup de problèmes. Après avoir introduit la notion de fonctions L, nous verrons divers outils analytiques permettant de conclure à la non annulation de certaines d'entre elles.
  • Le 27 janvier 2020 à 09:00
  • Manifestations Scientifiques
    Salle 2
    Organisation : C. Barranger\, M. Peybernes\, R. Loubère
    Worshop Modèles, couplage et propagation de front de fusion, solidification

  • Le 27 janvier 2020 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    Selene Silvestri\, FICO\, London
    What Operations Research "can do" for people in need
    The increased number of people affected by natural and man-made disasters has required major efforts from humanitarian organisations. For this reason, humanitarian logistics and supply chain management has seen a significant increase in interest from the academic world. The scope of this seminar is to show what Operations Research "can do" for people in need. This will be illustrated by two problems; in the context of restoring a water supply system for remote population in Nepal, and secondly in the context of enhancing the disaster preparedness of the Caribbean countries. Another important goal is to show how the "power" of Operations Research can be put into the hands of the non-technical people in the humanitarian organisations.
  • Le 27 janvier 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Xavier Caruso IMB
    Algorithme de Grover

  • Le 27 janvier 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Xavier Caruso IMB
    Algorithme de Grover

  • Le 28 janvier 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Jacques Martinet IMB
    Réseaux, variétés abéliennes et courbes
    On expliquera d'abord comment la notion de *variété abélienne complexe polarisée* possède une version euclidienne dans laquelle on considère des triplets $(E,\Lambda,v)$ d'un espace euclidien $E$, d'un réseau $\Lambda$ de $E$ et d'un élément $v$ de $\mathrm{GL}(E)$ tel que $v^2=-\mathrm{Id}$ et $v(\Lambda)\subset\Lambda^*$.
  • Le 28 janvier 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    D. Albritton University of Minnesota
    Weak-* stability and potential Navier-Stokes singularities
    In order to `zoom in' on a potential Navier-Stokes singularity, it is natural to consider sequences of Navier-Stokes solutions whose initial data are converging only in a weak-* sense. We identify a natural class of solutions satisfying the following stability property: weak-* convergence of the initial data in critical Besov spaces implies strong convergence of the corresponding solutions. We present applications of the weak-* stability property to problems concerning blow-up criteria in critical spaces, minimal blow-up initial data, and forward self-similar solutions. Finally, we discuss various difficulties concerning the analogous problem in BMO-1. Joint work with Tobias Barker (ENS).
  • Le 30 janvier 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Louis Thiry DI\, ENS Ulm
    Deep Network Classification by Scattering and Homotopy Dictionary Learning
    We introduce a structured convolutional neural network which provides a simple model to analyze properties of deep representation learning and yields a higher classification accuracy than AlexNet over the ImageNet ILSVRC2012 dataset. This network is composed of a scattering transform which linearizes variabilities due to geometric transformations followed by a sparse l1 dictionary coding and a 2 hidden layer classifier. The whole pipeline is implemented in a deep convolutional network with a homotopy algorithm having an exponential convergence for the sparse l1 dictionary coding.
  • Le 30 janvier 2020 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 385
    Luc Libralesso\, doctorant\, G-SCOP\, Grenoble INP
    Tree searches for the Sequential Ordering Problem: Contradicting conventional wisdom
    The trend towards a precise, numerical, and data-intensive agriculture brings forward the need to design and combine optimization techniques to obtain decision support methodologies that are efficient, interactive, robust and adaptable. In this paper, we consider the Differential Harvest Problem (DHP) in precision viticulture. To tackle this problem, we dedicated a specific column generation approach with enumeration techniques and a constraint programming model. Therefore, a set of simulated instances (which differ in field shape, zone shape, and size) was created to perform a parametric study on our different approaches. The specific column generation approach presented in this paper is preliminary work in the development path of more sophisticated resolution methods such as robust optimization and column generation/constraint programming hybridization.
  • Le 30 janvier 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Andreas Hartmann\, IMB-ESPE\, université de Bordeaux
    Multiplicateurs dans les espaces modèles

  • Le 30 janvier 2020 à 16:30
  • Séminaire Lambda
    Salle de conférence
    LABSIR Samy IMS/Université de Bordeaux
    Recursive parameters estimation of a cluster of space debris by filtering on Lie groups
    Ce travail aborde le problème du suivi d'un groupe de débris spatiaux suffisamment proches les uns des autres pour être considérés comme un seul objet étendu. Les méthodes de matrice aléatoire de pointe estiment la cinématique de la forme et du centroïde de l'objet en supposant que sa forme est elliptique et que les observations sont réparties de manière aléatoire dans cet ellipsoïde. Cependant, les débris spatiaux, dont le mouvement est entraîné par la force gravitationnelle, se sont dispersés en un amas en forme de "banane". Nous proposons une nouvelle paramétrisation basée sur le groupe de Lie pour capturer intrinsèquement la forme en forme de "banane". Plus précisément, nous formulons d'abord le problème de centroïde et de suivi de forme en tant que filtrage sur les groupes de Lie. Ensuite, nous dérivons un filtre de Kalman étendu itéré sur les groupes de Lie pour effectuer conjointement l'estimation de la forme et du centroïde du cluster.
  • Le 30 janvier 2020 à 17:00
  • Séminaire des doctorant·es
    Salle 2
    Samy Labsir
    Recursive parameters estimation of a cluster of space debris by filtering on Lie groups
    This work addresses the problem of tracking a cluster of space debris sufficiently close to each other to be considered as a single extended object. State-of-the-art random-matrix methods estimate the kinematics of the object shape and centroid by assuming that its shape is elliptic and that the observations are randomly distributed within this ellipsoid. However, space debris, whose motion is driven by the gravitational force, spread out into a "banana"-like-shaped cluster. We propose a novel Lie-group based parameterization to intrinsically capture the "banana"-like shape. More precisely, we first formulate the centroid and shape tracking problem as filtering on Lie groups. Then, we derive an iterated extended Kalman filter on Lie groups to perform jointly the shape and centroid estimation of cluster.
  • Le 31 janvier 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Rémi Boutonnet IMB
    Caractères et représentations unitaires des réseaux en rang supérieur
    Un fameux théorème de Margulis affirme que les réseaux dans des groupes de Lie semi-simples de rang au moins deux n'ont pas de sous-groupe normal non-trivial. Plusieurs généralisations ont été démontrées depuis. Je vais donner une version pour les représentations unitaires qui recouvre tous ces énoncés et fait le lien avec des travaux récents sur les C*-algèbres (et la C*-simplicité). Travail en commun avec Cyril Houdayer.
  • Le 31 janvier 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Ziyang Gao IMJ-PRG
    Borner le nombre de points rationnels sur une courbe
    Mazur a conjecturé, après la démonstration de la conjecture de Mordell-Weil par Faltings, que le nombre de points rationnels sur une courbe de genre g définie sur un corps de nombres de degré d est borné par g, d et le rang de Mordell-Weil. Dans cet exposé je vais expliquer comment démontrer cette conjecture. J'insisterai sur les applications de la théorie de transcendance sur les corps de fonctions et de la théorie d'intersections atypiques dans la preuve. Il s'agit d'un travail en commun avec Vesselin Dimitrov et Philipp Habegger.
  • Le 4 février 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Aude Le Gluher LORIA
    Une approche géométrique efficace pour le calcul d'espaces de Riemann-Roch : Algorithme et Complexité
    Le calcul effectif de bases d'espaces de Riemann-Roch intervient dans de nombreux domaines pratiques, notamment pour l'arithmétique dans les jacobiennes de courbes ou dans des codes correcteurs d'erreurs algébraico-géométriques. Nous proposons une variante probabiliste de l'algorithme de Brill et Noether décrit par Goppa pour le calcul d'une base de l'espace de Riemann-Roch $L(D)$ associé à un diviseur $D$ d'une courbe projective plane nodale $C$ sur un corps parfait $k$ suffisamment grand.
  • Le 4 février 2020 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Batiment A29, Amphi E
    Jean André\, Manager de l'équipe Recherche Opérationnelle & Data Science\, AirLiquide
    Supply Chain Optimization at AirLiquide
    - AirLiquide & Chiffre clés - Nos Supply Chain - Exemples de projets d'optimisation, avec un focus sur L'Inventory Routing Problem
  • Le 4 février 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle 2
    M. Aafarani
    Sur les propriétés spectrales de l'opérateur de Schrödinger non auto-adjoint.
    Dans cet exposé, on s'intéressera à un opérateur de Schrödinger avec un potentiel à valeurs complexes qui décroit rapidement à l'infini. On supposera que ce modèle non auto-adjoint possède une valeur propre zéro et de résonances réelles positives. On entend par résonance réelle un nombre positif pour lequel l'opérateur possède une fonction propre généralisée qui n'est pas de carré intégrable. Ces valeurs réelles forment un obstacle pour l'analyse spectrale de l'opérateur de Schrödinger non auto-adjoint. On présentera d'abord des résultats sur les développements asymptotiques de la résolvante au seuil zéro et près de résonances réelles positives. Puis, on déduira l'asymptotique en temps long de la solution de l'équation de Schrödinger associée.
  • Le 5 février 2020 à 09:00
  • Informations Diverses
    Salle 2
    Laurent Facq de la Cellule Informatique de l'IMB
    Formation SSH

  • Le 6 février 2020 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 385
    Gabriel Volte\, doctorant\, LIRMM\, Université de Montpellier
    Exact method approaches for the differential harvest problem
    The trend towards a precise, numerical, and data-intensive agriculture brings forward the need to design and combine optimization techniques to obtain decision support methodologies that are efficient, interactive, robust and adaptable. In this paper, we consider the Differential Harvest Problem (DHP) in precision viticulture. To tackle this problem, we dedicated a specific column generation approach with enumeration techniques and a constraint programming model. Therefore, a set of simulated instances (which differ in field shape, zone shape, and size) was created to perform a parametric study on our different approaches. The specific column generation approach presented in this paper is preliminary work in the development path of more sophisticated resolution methods such as robust optimization and column generation/constraint programming hybridization.
  • Le 6 février 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Thomas Milcent
    [Séminaire CSM] Analytic approach for Moment-of-Fluid interface reconstruction in 3D
    Simuler numériquement de manière précise l'évolution des interfaces séparant différents milieux est un eujeu crucial dans de nombreuses applications (multi-fluides, fluide-structure, etc). La méthode MOF (moment-of-fluid) est une extension récente de la méthode VOF (volume-of-fluid) qui permet de suivre plusieurs matériaux évoluant au cours du temps. Elle utilise une reconstruction affine des interfaces par cellule basée sur f'information des fractions volumiques et les centroïdes de chaque matériau. La position de l'interface dans chaque cellule est solution d'un problème de minimisation sous contrainte de volume. Les algorithmes utilisés dans la littérature sont basés sur des calculs géométriques sur des polyèdres et ont un coût important en 3D. On propose dans cet exposé une approche complètement analytique de l'expression de la fonction à minimiser et de ses dérivées dans le cadre de cellules cubiques en 3D. Les résultats numériques montrent que l'approche proposée est bien plus rapide (plusieurs ordres de grandeurs) et aussi robuste que les approches géométriques.
  • Le 6 février 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Sylvie Monniaux\, I2M\, Aix-Marseille Université
    Unicité pour le système de Boussinesq via régularité maximale dans des espaces critiques.
    Le système de Boussinesq est un couplage entre les équations de Navier-Stokes modélisant un fluide incompressible stratifié par la température et une équation de la chaleur transportée par la vitesse du fluide. On montre l'unicité des solutions “mild” dans des espaces critiques en utilisant la méthode de la régularité maximale. C'est un travail en cours, en collaboration avec Lorenzo Brandolese (Lyon).
  • Le 6 février 2020 à 15:30
  • Le Colloquium
    Salle de Conférences
    Raphael Krikorian Cergy
    Sur la divergence des formes normales de Birkhoff.
    Un difféomorphisme du plan, réel analytique, symplectique (i.e. préservant l'aire) et admettant l'origine comme point fixe elliptique non résonnant est toujours formellement conjugué à un un système intégrable formel, sa forme normale de Birkhoff. Celle-ci est un invariant de conjugaison analytique et se révèle très utile lorsque l'on veut établir l'existence d'orbites quasi-périodiques. Siegel a démontré dans les années 50 que la conjugaison formelle qui amène le difféomorphisme à sa forme normale est en général divergente (c'est-à-dire ne définit pas une fonction analytique) . Il est alors naturel de se poser la question de la convergence ou de la divergence de le forme de Birkhoff elle-même. Plus généralement, je discuterai les implications sur la dynamique de la convergence de objet formel qu'est la forme normal de Birkhoff.
  • Le 7 février 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Florent Balacheff Barcelone
    Sur le produit des longueurs de géodésiques fermées d'une variété Riemannienne
    Le second théorème de Minkowski revient à une inégalité sur les tores plats Finsler de dimension n entre le volume et le produit des longueurs de géodésiques fermées homologiquement indépendantes. Nous présenterons une généralisation de ce résultat fondamental à une classe plus large de variétés Finsler. Cela inclut des variétés pour lesquelles le premier nombre de Betti et la dimension ne coincident plus, comme les surfaces. Il s'agit d'un travail en commun avec Steve Karam et Hugo Parlier.
  • Le 7 février 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Kęstutis Česnavičius Orsay
    The Manin constant and the modular degree
    By the modularity theorem, an elliptic curve $E$ over $\mathbf Q$ of conductor $N$ admits a surjection $\varphi$ from the modular curve $X_0(N)$. The Manin constant $c$ of such a modular parametrization of $E$ is the integer that scales the differential associated to the normalized newform on $\Gamma_0(N)$ determined by the isogeny class of $E$ to the $\varphi$-pullback of a Néron differential of $E$. For optimal $\varphi$ Manin conjectured his constant to be $1$, and we show that in general it divides $\operatorname{deg}(\varphi)$ under mild assumptions at the primes $2$ and $3$. This gives new restrictions on the primes that could divide the Manin constant. The talk is based on joint work with Michael Neururer and Abhishek Saha.
  • Le 7 février 2020 à 16:30
  • Séminaire Lambda
    Salle de conférence
    Vergara Hermosilla Gaston IMB
    Some conclusions about a system modelling rigid structures floating in a viscous fluid
    Dans cet exposé, nous étudierons un modèle basé sur la PDE pour le mouvement vertical d'un solide flottant à la surface libre d'un fluide visqueux peu profond. Nous montrerons que les équations gouvernantes définissent un système linéaire bien posé, et grâce à une forme explicite de la fonction de transfert nous prouvons que le système est stable en entrée-sortie. Dans la deuxième partie de l'exposé, nous allons présentent des résultats récents sur une représentation diffusive et le comportement asymptotique d'une équation de type Cummins associée au modèle EDP.
  • Le 7 février 2020 à 17:00
  • Séminaire des doctorant·es
    Salle 2
    Gastón Vergara Hermosilla
    Some conclusions about a system modelling rigid structures floating in a viscous fluid...
    In this talk we will study a PDE based model for the vertical motion of a solid floating at the free surface of a shallow viscous fluid. We will show that the governing equations defines a well-posed linear system, and thanks to an explicit form of the transfer function we prove that system is input-output stable. In the second part of the talk, we will present some recent results about a diffusive representation and the asymptotic behaviour of an equation of Cummins type associated to the PDE model.
  • Le 10 février 2020 à 14:00
  • Groupe de Travail Analyse
    Salle 2
    Kobra Esmaeili Ardakan University Iran
    Generalized weighted composition operators from logarithmic Bloch type spaces to weighted type spaces
    In this talk, we characterize the boundedness of generalized weighted composition operators from logarithmic Bloch type spaces to $n$th weighted type spaces of holomorphic functions on the open unit disc and then we provide an estimation for the essential norm of these operators.
  • Le 11 février 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Raphael Rieu-Helft Université Paris-Sud
    How to Get an Efficient yet Verified Arbitrary-Precision Integer Library
    We present a fully verified arbitrary-precision integer arithmetic library designed using the Why3 program verifier. It is intended as a verified replacement for the mpn layer of the state-of-the-art GNU Multi-Precision library (GMP).
  • Le 11 février 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    R. Bianchini
    Nonresonant bilinear forms for partially..dissipative hyperbolic systems violating the..Shizuta-Kawashima condition
    We consider a simple example of a partially dissipative hyperbolic system violating the Shizuta-Kawashima condition, i.e. such that some eigendirections do not exhibit dissipation at all. In the space-time resonances framework introduced by Germain, Masmoudi and Shatah, we prove that, when the source term has a Nonresonant Bilinear Form, as proposed by Pusateri and Shatah CPAM 2013, the formation of singularities is prevented, despite the lack of dissipation. This allows us to show that smooth solutions to this preliminary case-study model exist globally in time.
  • Le 11 février 2020 à 14:00
  • Informations Diverses
    salle 286
    Laurent Facq de la Cellule Informatique de l'IMB
    Formation SSH

  • Le 13 février 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Vincent Duval Inria Paris\, Mokaplan
    Representing the solutions of total variation regularized problems
    The total (gradient) variation is a regularizer which has been widely used in inverse problems arising in image processing, following the pioneering work of Rudin, Osher and Fatemi. In this talk, I will describe the structure the solutions to the total variation regularized variational problems when one has a finite number of measurements. First, I will present a general representation principle for the solutions of convex problems, then I will apply it to the total variation by describing the faces of its unit ball. It is a joint work with Claire Boyer, Antonin Chambolle, Yohann De Castro, Frédéric de Gournay and Pierre Weiss.
  • Le 13 février 2020 à 14:00
  • Séminaire de l'équipe Dynamique des Populations
    Salle 1
    Simon Labarthe\, INRAE Bordeaux
    modèles et données en écologie microbienne

  • Le 13 février 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Vesselin Petkov\, IMB\, Université de Bordeaux
    Théorèmes Tauberiens pour des suites de fonctions
    Cf. https://plmbox.math.cnrs.fr/f/5f7325088cb24e5cb0df/
  • Le 14 février 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Vincent Pécastaing Université du Luxembourg
    Actions de réseaux de rang supérieur sur des structures conformes et projectives
    L'idée phare du programme de Zimmer est qu'en rang supérieur ou égal à 2, la rigidité des réseaux des groupes de Lie semi-simples est telle qu'on peut comprendre leurs actions sur des variétés compactes. Après un bref survol donnant une idée plus précise des conjectures de Zimmer et de leur contexte, je présenterai des résultats récents portant sur les actions conformes ou projectives de réseaux cocompacts. L'absence de forme volume naturelle invariante sur ces structures est l'une des motivations principales. On verra que le rang réel est borné comme lorsque le groupe de Lie ambiant agit, et qu'à la valeur critique, la variété est globalement équivalente à un espace homogène modèle. Les preuves s'appuient en outre sur un "principe d'invariance" introduit récemment par Brown, Rodriguez-Hertz et Wang, assurant l'existence de mesures finies invariantes dans certains contextes dynamiques.
  • Le 14 février 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Benjamin Wesolowski IMB
    Discrete logarithms in quasi-polynomial time in finite fields of small characteristic
    We prove that the discrete logarithm problem can be solved in quasi-polynomial expected time in the multiplicative group of finite fields of fixed characteristic. In 1987, Pomerance proved that this problem can be solved in expected subexponential time $L(1/2)$. The following 30 years saw a number of heuristic improvements, but no provable results. The quasi-polynomial complexity has been conjectured to be reachable since 2013, when a first heuristic algorithm was proposed by Barbulescu, Gaudry, Joux, and Thomé. We prove this conjecture, and more generally that this problem can be solved in the field of cardinality $p^n$ in expected time $(pn)^{2 log_2(n)+O(1)}$.
  • Le 17 février 2020 à 14:00
  • Groupe de Travail Analyse
    Salle 2
    Sebastian Tapia IMB
    compact operators and differentiability

  • Le 17 février 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Razvan Barbulescu IMB
    Equivalence entre le cryptosystem d'Alekhnovich et son problème sousjacent

  • Le 17 février 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Razvan Barbulescu IMB
    Equivalence entre le cryptosystem d'Alekhnovich et son problème sousjacent

  • Le 18 février 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Alex Bartel University of Glasgow
    The ray class group of a "random" number field
    The Cohen–Lenstra–Martinet heuristics are a probabilistic model for the behaviour of class groups of number fields in natural families. In this talk, I will discuss a generalisation to ray class groups. About 5 years ago, Varma determined the average number of 3-torsion elements in the ray class group of K with respect to m, when m is a fixed rational modulus, and K runs through the family of imaginary quadratic or of real quadratic fields. Since then, Bhargava has been challenging the community to come up with a natural probabilistic model that would explain the numbers obtained by Varma, and to predict more general averages in more general families of number fields. As I will explain in my talk, there turns out to be a very simple-minded way of doing so, and also a much more conceptual one, and they both turn out to be equivalent. The more conceptual one involves an object that does not appear to have been treated in the literature before, but that is very natural: the Aralelov ray class group of a number field. This is joint work with Carlo Pagano.
  • Le 18 février 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    G. Fourdonavlos
    Stabilité linéarisée des "étoiles dures" en relativité générale
    On va introduire et étudier une famille de solutions statiques des équations d'Einstein-Euler à symétrie sphérique. Celles-ci sont décrites par un fluide parfait avec une équation d'état linéaire, modélisant le noyau dur d'une étoile qui a subi une supernova, mais ne s'est pas effondré dans un trou noir. La première étude variationnelle de ces étoiles, en relativité générale, a été réalisée par Harrison-Thorne-Wakano-Wheeler (1965). Je présenterai un travail récent, en collaboration avec Volker Schlue, traitant les équations d'Einstein-Euler linéarisées, sur ces solutions statiques, en symétrie sphérique. Nous aborderons notamment deux caractéristiques principales des étoiles dures de petite masse, l'énergie bornée et la présence de solutions périodiques au système d'équations linéarisé. Nous relierons ensuite ces propriétés au problème de stabilité orbitale.
  • Le 20 février 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 2
    Christèle Etchegaray Inria\, IMB
    Stochastic modeling of single-cell migration
    Cell migration is commonly involved in physiological and pathological phenomena. It is also a very complex process, since cell trajectories result from an intracellular self-organized activity spanning different space and time scales. In this talk, I will introduce a stochastic model for single cell trajectories based on a nonlinear measure-valued Markovian jump process for the membrane's deformation dynamics. Performing some scaling limit allows to obtain a nonlinear Stochastic Differential Equation for the cell velocity. Further analysis puts to light the ability of the model to capture several migratory behaviors and to derive key quantities of the dynamics. Finally, I will explain how this model can be enriched to take into account the cell's interaction with its environment.
  • Le 20 février 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Nikolaos Chalmoukis - University of Bologna
    Simple Interpolating Sequences for the Dirichlet Space

  • Le 20 février 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Paul Vigneaux ENS Lyon
    [Séminaire CSM] Variations autour des fluides de Bingham : équations naturelles ou intégrées
    Dans cet exposé, nous ferons un panorama de méthodes et simulations numériques pour les fluides à seuil, basées sur des méthodes de dualité. Dans un premier temps, nous présenterons le problème des équations de type Bingham dans un canal en expansion-contraction qui permet d'obtenir des couches limites viscoplastiques. Nous revisiterons la théorie asymptotique d'Oldroyd (1947) dans le cas où les nombres caractéristiques sont modérés. Cette étude mélange simulations HPC et allers-retours avec des expériences physiques d'IRSTEA. Une seconde partie traitera ensuite d'un modèle original de Saint-Venant-Bingham pour ces fluides viscoplastiques, en lien avec des applications géophysiques. Nous proposons un nouveau schéma volumes-finis qui couple dualité et techniques équilibrées. Ses propriétés sont illustrées sur un prototype d'avalanche de neige dense dans le couloir de Taconnaz (massif du Mont-Blanc).
  • Le 21 février 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Jasmin Raissy Toulouse
    Un plongement holomorphe dynamique Runge de $\mathbb{C}\times\mathbb{C}^*$ dans $\mathbb{C}^2$.
    Je vais présenter la construction d'une famille d'automorphismes de $\mathbb{C}^2$ ayants une composante de Fatou invariante, attractive non-récurrente, c'est-à-dire où toute orbite converge vers un point fixe au bord de la composante, qui est biholomorphe à $\mathbb{C}\times\mathbb{C}^*$. Comme corollaire, nous obtenons une copie Runge de $\mathbb{C}\times\mathbb{C}^*$ plongée holomorphiquement dans $\mathbb{C}^2$. (Il s'agit d'un travail en collaboration avec Filippo Bracci et Berit Stensønes).
  • Le 21 février 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Matthias Flach California Institute of Technology
    Zeta functions of arithmetic surfaces and the conjecture of Birch and Swinnerton-Dyer..
    We discuss a special value conjecture for the Zeta function of an arithmetic surface at $s=1$, and how it is equivalent to the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the generic fibre. Along the way we slightly generalize a formula due to Geisser relating the Brauer group and the Tate-Shafarevich group, and we develop some results on the eh-topology for varieties over finite fields.
  • Le 25 février 2020 à 10:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    Jiao He
    Évanescence d'un petit solide dans un fluide visqueux incompressible.
    Dans cet exposé, je présenterai un problème qui modélise le mouvement d'un solide dans un fluide visqueux incompressible. On s'intéresse ici à l'évolution d'un seul petit obstacle qui se contracte vers un point dans un fluide de R^2 ou R^3. On montrera la convergence des solutions du système fluide-solide vers une solution des équations de Navier-Stokes sans obstacle grâce aux estimations d'énergie.
  • Le 25 février 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    L. Hillairet Orléans
    Ecart uniforme entre les valeurs propres pour un potentiel singulier...
    On étudie comment une singularité de type puissance dans le potentiel affecte le spectre d'une équation de Schrödinger semiclassique 1D sur une demi-droite. On s'intéresse notamment à une description de l'écart entre les valeurs propres uniformisant les différents régimes (énergies non-critiques, fond de puits). Travail en commun avec Jeremy Marzuola (UNC).
  • Le 27 février 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Relâche

  • Le 2 mars 2020
  • Informations Diverses
    Bureau 225
    La Cellule Informatique
    Effectif réduit pendant la semaine, anticipez vos passages avec un mail à help si possible pour le récolement. Pour les autres demandes, les plages d'ouverture sont réduites aux créneaux 10h-12h et 14h-16h.

  • Le 5 mars 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Vacances d'hiver

  • Le 9 mars 2020 à 14:30
  • Soutenances
    Salle de Conférences
    Michael Matusinski présentera son exposé en vue de son Habilitation à Diriger des Recherches
    Titre des travaux :"Séries formelles et méthodes transcendantes en géométrie modérée".

  • Le 9 mars 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Jean Kieffer IMB
    Codes géométriques

  • Le 9 mars 2020 à 16:00
  • Groupe de Travail de Théorie Algorithmique des Nombres
    Salle 2
    Jean Kieffer IMB
    Codes géométriques

  • Le 10 mars 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Florent Jouve IMB
    Harmonie et disparités dans le théorème de Chebotarev
    Étant donné une extension galoisienne de corps de nombres L/K, le théorème de Chebotarev affirme l'équirépartition des éléments de Frobenius, relatifs aux idéaux premiers non ramifiés, dans les classes de conjugaison de Gal(L/K). On présentera une étude portant sur les variations du terme d'erreur dans le théorème de Chebotarev, lorsque L/K parcourt certaines familles d'extensions. On donnera une formule de transfert pour les fonctions classiques de décompte des nombres (ou idéaux) premiers permettant de ramener la situation à celle d'une extension des rationnels. On exposera enfin quelques conséquences à des problèmes de "type Linnik" et à l'analogue du phénomène de biais de Chebyshev dans les corps de nombres. L'exposé porte sur un travail commun avec D. Fiorilli.
  • Le 11 mars 2020 à 11:00
  • Séminaire de Théorie des Nombres
    Salle 385
    Cathy Swaenepoel (Montréal)\n Attention à l'horaire et au lieu inhabituels : mercredi 11 mars à 11h en salle 385
    Nombres premiers avec des chiffres préassignés
    Bourgain (2015) a estimé le nombre de nombres premiers avec une proportion $c>0$ de chiffres préassignés en base 2 (c est une constante absolue non précisée). Nous présenterons une généralisation de ce résultat à toute base $g \geq 2$ et nous donnerons des valeurs explicites pour la proportion $c$ en fonction de $g$. Notre preuve, qui développe, précise et prolonge la stratégie de Bourgain, est fondée sur la méthode du cercle et combine des techniques d'analyse harmonique avec des résultats sur les zéros des fonctions $L$ de Dirichlet, notamment une région sans zéro très fine due à Iwaniec.
  • Le 12 mars 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Barbara Pascal ENS Lyon
    How fractal texture segmentation turns to be a strongly convex optimization problem ?
    Texture segmentation still constitutes an ongoing challenge, especially when processing large-size images. The aim of this work is twofold.
    First, we provide a variational model for simultaneously extracting and regularizing local texture features, such as local regularity and local variance. For this purpose, a scale-free wavelet-based model, penalised by a Total Variation regularizer, is embedded into a convex optimisation framework. Second, we investigate convergence acceleration strategies, relying on strong-convexity of the objective function, in order to deal with computational cost induced by the minimization. Finally, we illustrate the developed procedures on real-world images of multiphasic flows.
  • Le 12 mars 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 12 mars 2020 à 14:00
  • Séminaire de l'équipe Dynamique des Populations
    Salle 1
    Connor Tiffany
    Omic data in microbial ecology. Inferring ecological models with metabarcoding data.

  • Le 12 mars 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Romuald Ernst\, LMPA\, Université du Littoral Côte d'Opale
    De la fréquente hypercyclicité à la fréquente hypercyclicité commune.
    Dans cet exposé, je comparerai certains résultats de dynamique linéaire dus à différents auteurs et j'expliquerai ce qui m'a motivé à considérer les questions de fréquente hypercyclicité commune. Je parlerai ensuite de travaux en cours obtenus en collaboration avec Stéphane Charpentier, Monia Mestiri (Mons) et Augustin Mouze (Lille) sur ce sujet.
  • Le 12 mars 2020 à 15:30
  • Le Colloquium
    Salle de Conférences
    Vladimir Dotsenko
    Many faces of pre-Lie algebras
    Pre-Lie algebras appear virtually everywhere : from combinatorics to mathematical physics, from differential geometry to homotopy theory. In this talk, I will tell a historical overview of how this notion was repeatedly invented, give some hands-on examples of pre-Lie algebras, and explain some theorems about them, from very old to surprisingly recent.
  • Le 12 mars 2020 à 16:30
  • Séminaire Lambda
    Salle de conférence
    BAILLEUL Alexandre IMB
    Fonctions L et courses de nombres premiers
    La répartition des nombres premiers est profondément liée à la répartition des zéros de certaines fonctions analytiques, appelées fonctions L. Un problème relativement récent et peu connu concernant la répartition des nombres premiers est celui des "courses de nombres premiers". L'exemple typique est le suivant : bien que les nombres de nombres premiers inférieurs à x congrus à 1 mod 4 et à 3 mod 4 sont asymptotiquement équivalents quand x tend vers l'infini (théorème des nombres premiers en progressions arithmétiques), on observe que les premiers congrus à 3 mod 4 apparaissent plus fréquemment que ceux qui sont congrus à 1 mod 4. Dans l'exposé, j'expliquerai comment étudier ce phénomène, appelé biais de Tchebychev, dans divers contextes à l'aide de fonctions L.
  • Le 12 mars 2020 à 17:00
  • Séminaire des doctorant·es
    Salle 2
    Alexandre Bailleul
    Fonctions L et courses de nombres premiers..
    La répartition des nombres premiers est profondément liée à la répartition des zéros de certaines fonctions analytiques, appelées fonctions L. Un problème relativement récent et peu connu concernant la répartition des nombres premiers est celui des "courses de nombres premiers". L'exemple typique est le suivant : bien que les nombres de nombres premiers inférieurs à x congrus à 1 mod 4 et à 3 mod 4 sont asymptotiquement équivalents quand x tend vers l'infini (théorème des nombres premiers en progressions arithmétiques), on observe que les premiers congrus à 3 mod 4 apparaissent plus fréquemment que ceux qui sont congrus à 1 mod 4. Dans l'exposé, j'expliquerai comment étudier ce phénomène, appelé biais de Tchebychev, dans divers contextes à l'aide de fonctions L.
  • Le 13 mars 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Nicolas Tholozan DMA/ENS
    Géométrie des espaces localement homogènes
    On s'intéresse dans cet exposé aux quotients compacts d'espaces homogènes réductifs, c'est-à-dire aux espaces de la forme $\Gamma \backslash G/H$ où $G$ est un groupe de Lie semi-simple, $H$ un sous-groupe réductif et $\Gamma$ un sous-groupe discret de $G$ agissant proprement discontinûment et cocompactement sur $G/H$. Nous formulerons une conjecture sur la géométrie de ces quotients et nous expliquerons que, bien que loin d'être résolue en général, cette conjecture inspire de nombreux résultats intéressants, notamment des obstructions puissantes à l'existence de tels quotients.
  • Le 13 mars 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    K. Buyukboduk Dublin
    ANNULÉ

  • Le 17 mars 2020 à 14:00
  • Manifestations Scientifiques
    Institut Mathématique d'Orsay
    Organisation : Laurent Michel
    Rencontre QuAMProcs

  • Le 19 mars 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Antonin Prochazka\, LMB\, Université de Franch-Comté\, Besançon
    Annulé!!! - Plongements des espaces Lipschitz libres dans $ell_1$.
    We show that, for a separable and complete metric space M, the Lipschitz-free space F(M) embeds linearly and almost-isometrically into $\ell_1$ if and only if M is a subset of an R-tree with length measure 0. Moreover, it embeds isometrically if and only if the length measure of the closure of the set of branching points of M (taken in any minimal R-tree that contains M) is negligible. We also prove that, for any subset M of an R-tree, every extreme point of the unit ball of F(M) is an element of the form (δ(x)−δ(y))/d(x,y) for x≠y∈M. Joint work with R. Aliaga and C. Petitjean.
  • Le 19 mars 2020 à 14:00
  • Séminaire de l'équipe Dynamique des Populations
    Salle 1
    -
    Gwenael Peltier

  • Le 20 mars 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Anne Lonjou Bâle
    Actions des groupes de Cremona sur des complexes cubiques CAT(0) (annulé)
    À toute variété algébrique nous pouvons associer son groupe de transformations birationnelles. Un des cas les plus intéressants est lorsque la variété considérée est l'espace projectif de dimension n. Dans ce cas, ce groupe est appelé groupe de Cremona de rang n. Le groupe de Cremona de rang 2 est maintenant assez bien compris bien que ce soit un groupe compliqué. Un des outils clés pour l'étudier est son action sur un espace hyperbolique. Malheureusement, en rang supérieur une telle action n'est pas à notre disposition. Récemment en théorie géométrique des groupes, les actions de groupes sur des complexes cubiques CAT(0) se sont avérées être un outil important pour étudier une large classe de groupes. Dans cet exposé, basé sur un travail en commun avec Christian Urech, nous construirons de tels complexes sur lesquels les groupes de Cremona agissent. Nous verrons également quels résultats nous pouvons ainsi obtenir sur ces groupes.
  • Le 20 mars 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    F. Pazuki Copenhague/Bordeaux
    Sans titre

  • Le 23 mars 2020 à 14:00
  • Groupe de Travail Analyse
    Salle 2
    Thomas Cometx (IMB) (GDT reporté)
    Fonctions de Littlewood-Paley-Stein pour les opérateurs de Schrödinger et de Hodge-de Rham dans le cas sous-critique
    Les fonctions de Littlewood-Paley-Stein sont très liées à la transformée de Riesz $\Delta^{-1/2}$ et peuvent être utilisées pour prouver sa continuité en norme $L^p$. Dans cet exposé, nous étudierons la continuité $L^p$ de ces fonctions soit pour les opérateurs de Schrodinger sur les fonctions dans le cas où la partie négative du potentiel est sous critique, soit pour le Laplacien de Hodge pour les 1-formes dans la cas où le partie négative de la courbure de Ricci est sous critique. On obtient leur continuité sur une intervalle $(p_0,2]$ où $p_0$ depend des hypothèses prises sur le potentiel ou sur la courbure. Cela donne des résultats sur la continuité de la transformée de Riesz pour $p > 2$ sans hypothèse de doublement de volume ou d'estimation Gaussienne sur le noyau de la chaleur.
  • Le 24 mars 2020 à 10:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    R. Höfer Bonn
    Sans titre

  • Le 24 mars 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    H. Isozaki
    Sans titre

  • Le 25 mars 2020 à 09:00
  • Informations Diverses
    salle 286
    Laurent Facq de la Cellule Informatique de l'IMB
    Formation "Git Débutant"

  • Le 25 mars 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    ANNULE : Roland Schnaubelt Karlsruhe Institute of Technology\, KIT
    ANNULE : Decay of quasilinear Maxwell equations with conductivity
    We discuss the Maxwell system with nonlinear instantaneous material laws and a strictly positive conductivity in the domain. The coefficients are matrix-valued. For small initial data we can show that the solution exponentially decays to 0 in H^3. We use higher order energy bounds and observability-type estimates both with error terms arising from the quasilinearity. A detailed regularity analysis is needed to control these error terms. This is joint work with Irena Lasiecka (Memphis) and Michael Pokojovy (El Paso).
  • Le 26 mars 2020
  • Manifestations Scientifiques
    Salle de Conférences
    Comité d'organisation : L. Abi-Rizk\, X. Caruso\,R. Loubère\, V. Koziarz
    Journée des prix en Mathématiques 2019-2020 de l'Académie des Sciences

  • Le 26 mars 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bochra Mejri
    [Séminaire CSM] REPORTÉ - Topological sensitivity analysis for identification of voids under Navier's boundary conditions in linear elasticity
    This talk is concerned with a geometric inverse problem related to the two-dimensional linear elasticity system. Thereby, voids under Navier's boundary conditions are reconstructed from the knowledge of partially over-determined boundary data. The proposed approach is based on the so-called energy-like error functional combined with the topological sensitivity method. The topological derivative of the energy-like misfit functional is computed through the topological-shape sensitivity method. Firstly, the shape derivative of the corresponding misfit function is presented briefly from previous work. Then, an explicit solution of the fundamental boundary-value problem in the infinite plane with a circular hole is calculated by the Muskhelishvili formulae. Finally, the asymptotic expansion of the topological gradient is derived explicitly with respect to the nucleation of a void. Numerical tests are performed in order to point out the efficiency of the developed approach.
  • Le 26 mars 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle de Conférences
    -
    [Séminaire CSM]

  • Le 26 mars 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Relache - Journée des Prix de l'Académie des Sciences

  • Le 27 mars 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Fabrizio Barroero Roma Tre
    REPORTÉ

  • Le 31 mars 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    A. Bondesan
    Sans titre

  • Le 2 avril 2020 à 13:00
  • Séminaire de l'équipe Dynamique des Populations
    Salle 1
    Sepideh Mirrahimi
    Selection and mutation in a shifting and fluctuating environment

  • Le 2 avril 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Jaydeb Sarkar\, Indian Institute of Statistics\, Bangalore\, India
    Annulé!!! - tba

  • Le 3 avril 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    A. Queguiner-Mathieu Paris 13
    Sans titre

  • Le 7 avril 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    C. Fermanian
    Théorème d'Egorov sur les groupes de type Heisenberg
    Nous présenterons dans cet exposé des résultats récents obtenus en collaboration avec Véronique Fischer (University of Bath, UK) et visant à développer une analyse semi-classique sur les groupes de Lie. Nous discuterons un calcul pseudodifférentiel semi-classique sur ces groupes ainsi que les théorèmes de type Egorov et la notion de mesure semi-classique qui en découlent dans le cas des groupes de type Heisenberg.
  • Le 10 avril 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Ludovic Marquis IRMAR
    Exposé reporté

  • Le 10 avril 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    F. Campagna Copenhague
    Sans titre

  • Le 14 avril 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    D. Häfner Grenoble
    Séminaire annulé

  • Le 16 avril 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bertrand Michel
    [Séminaire CSM] REPORTÉ

  • Le 16 avril 2020 à 14:00
  • Manifestations Scientifiques
    Guimaraes, Portugal
    Comité d'organisation : Stéphane Clain univ. Minho\, Braga\, Raphaël Loubère univ.Bordeaux.
    Machine learning for CFD Computation

  • Le 21 avril 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    C. Collot
    On the derivation of the homogeneous kinetic wave equation
    The kinetic wave equation arises in many physical situations: the description of small random surface waves, or out of equilibria dynamics for large quantum systems for example. In this talk we are interested in its derivation as an effective equation from the nonlinear Schrodinger equation (NLS) for the microscopic description of a system. More precisely, we will consider (NLS) in a weakly nonlinear regime on the torus in any dimension greater than two, and for highly oscillatory random Gaussian fields as initial data. A conjecture in statistical physics is that there exists a kinetic time scale on which, statistically, the Fourier modes evolve according to the kinetic wave equation. We prove this conjecture up to an arbitrarily small polynomial loss in a particular regime, and obtain a more restricted time scale in other regimes. The main difficulty, that I will comment on, is that one needs to identify the leading order statistically observable nonlinear effects. This means understanding correlation between Fourier modes, and relating randomness with stability and local well-posedness. The key idea of the analysis is the use of Feynman interaction diagrams to understand the solution as colliding linear waves. We use this framework to construct an approximate solution as a truncated series expansion, and use in addition random matrices tools to obtain its nonlinear stability using Bourgain spaces. This is joint work with P. Germain from Courant Institute, New York University.
  • Le 23 avril 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Mohamed Bachir\, Université Paris 1
    tba

  • Le 24 avril 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Thomas Haettel Montpellier
    Exposé reporté

  • Le 30 avril 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Vacances de printemps

  • Le 30 avril 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Solène Bulteau Maison de la simulation
    [Séminaire CSM] REPORTÉ

  • Le 7 mai 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    ANNULE !!! Colloque WACOT2020 "Workshop on Analysis and Control Theory"

  • Le 12 mai 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    J. Faupin Univ. Lorraine
    Sans titre

  • Le 14 mai 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Maelle Nodet
    [Séminaire CSM] REPORTÉ - Quelques contributions à l'assimilation de données images
    "Assimiler des données" est un problème inverse qui consiste à combiner diverses informations sur un système physique donné en vue d'effectuer des prévisions de l'évolution de ce système. Par exemple, en météorologie, on combine l'information contenue dans 1/ les mesures et observations de l'atmosphère, 2/ les équations de la mécanique des fluides et 3/ les statistiques sur les erreurs de mesure, en vue de prévoir le temps futur. Dans cet exposé, je présenterai l'assimilation de données puis je donnerai un exemples de problème d'assimilation dans le cas où les observations du système sont des images (comme des images satellites, des photos, etc.), autrement dit des données denses en espace.
  • Le 14 mai 2020 à 15:30
  • Le Colloquium
    Salle de Conférences
    Sébastien Gouezel Nantes
    REPORTE A UNE DATE ULTERIEURE

  • Le 15 mai 2020
  • Soutenances
    Salle de Conférences
    Felipe NEGREIRA
    Sujet : "Extensions de la théorie de l'échantillonnage: échantillonnage sur des espaces de type homogène et échantillonnage le long de..courbes". Directeur de thèse : Philippe Jaming

  • Le 15 mai 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Pierre Py Strasbourg
    reporté

  • Le 15 mai 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    K. Kedlaya UCSD
    Sans titre

  • Le 19 mai 2020 à 11:30
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    A. Stingo UC Davies
    Sans titre

  • Le 20 mai 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Hakan Hedenmalm\, KTH\, Stockholm\, Suède
    Gaussian analytic functons & Dirichlet type symbols.

  • Le 21 mai 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Ascension, férié

  • Le 22 mai 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Mario Shannon
    reporté

  • Le 28 mai 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 29 mai 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Florent Schaffhauser Strasbourg
    Exposé en visio !

  • Le 4 juin 2020 à 11:00
  • Séminaire d'Analyse
    Salle de Conférences
    José Pelaez\, Université de Malaga\, Espagne
    On the boundedness of Bergman projection on L^p spaces.
    https://plmbox.math.cnrs.fr/f/a107a654345941ae9992/
  • Le 5 juin 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Laurent Manivel Toulouse
    Exposé reporté

  • Le 5 juin 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Stefan Schröer Düsseldorf
    Sans titre

  • Le 8 juin 2020
  • Manifestations Scientifiques
    Paris
    Comité d'organisation : Rémi Boutonnet\, Claire Debord\, Pierre Fima\, François le Maître
    Workshop on Operator algebras and group dynamics

  • Le 11 juin 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 11 juin 2020 à 14:30
  • Séminaire d'Analyse
    Salle de Conférences
    Félipé Negreira\, IMB\, Université de Bordeaux
    Soutenance de la thèse: Extensions of sampling theory:..sampling on spaces of homogeneous type and sampling along curves.

  • Le 12 juin 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Benoît Kloeckner
    Exposé en visio à 10h15 !

  • Le 12 juin 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Anna Cadoret IMJ
    Sans titre

  • Le 19 juin 2020 à 10:15
  • Séminaire de Géométrie
    En Visio
    Uri Bader Weizmann Institute
    Totally geodesic subspaces and arithemeticity phenomena in hyperbolic manifolds
    In this talk I will survey a well known, still wonderful, connection between geometry and arithmetics and discuss old and new results in this topic. The starting point of the story is Cartan's discovery of the correspondence between semisimple Lie groups and symmetric spaces. Borel and Harish-Chandra, following Siegel, later realized a fantastic further relation between arithmetic subgroups of semisimple Lie groups and locally symmetric space - every arithemtic group gives a locally symmetric space of finite volume. The best known example is the modular curve which is associated in this way with the group SL_2(Z). This relation has a partial converse, going under the name "arithmeticity theorem", which was proven, under a higher rank assumption, by Margulis and in some rank one situations by Corlette and Gromov-Schoen. The rank one setting is related to hyperbolic geometry - real, complex, quaternionic or octanionic. There are several open questions regarding arithmeticity of locally hyperbolic manifolds of finite volume over the real or complex fields and there are empirical evidences relating these questions to the geometry of totally geodesic submanifolds. Recently, some of these questions were solved by Margulis-Mohammadi (real hyp. 3-dim), Baldi-Ullmo (complex hyp.) and B-Fisher-Miller-Stover. The techniques involve a mixture of ergodic theory, algebraic groups theory and hodge theory. After surveying the above story, explaining all the terms and discuss some open questions, I hope to have a little time to say something about the proofs.
  • Le 22 juin 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Anton Baranov\, St. Petersburg State University\, Russia
    Backward shift and nearly invariant subspaces of Fock-type spaces.
    We study the structure of the backward shift-invariant and nearly invariant subspaces in weighted Fock-type spaces whose weight is not necessarily radial. We show that in the spaces which contain polynomials as a dense subset (in particular, in the radial case) any nontrivial backward shift-invariant subspace coincides with a finite dimensional subspace consisting of polynomials up to a certain degree. In general, the structure of nearly invariant subspaces is more complicated. In the case of spaces of slow growth (up to zero exponential type) we establish an analogue of de Branges' Ordering Theorem. This is a joint work with Alexandru Aleman, Yurii Belov, and Haakan Hedenmalm.
  • Le 22 juin 2020 à 16:30
  • Séminaire Lambda
    Salle de conférence
    MONIER Ludovic Institut de Mathématiques de Toulouse
    Théorèmes HKR en géométrie dérivée.
    Après une rapide introduction à la géométrie dérivée, j'exposerai les différentes versions du théorème HKR, en caractéristique nulle, et aussi en caractéristique quelconque avec le cercle filtré. Si le temps le permet, on abordera les possibilités d'existence d'analogues cristallin ou prismatique de ce cercle.
  • Le 24 juin 2020 à 14:00
  • Soutenances
    Institut Bergonié
    Amandine CROMBE
    Sujet : "Développement des approches de radiomics à visées pronostique et thérapeutique en cancérologie à partir du modèle des sarcomes..des tissus mous". Directeur de thèse : Olivier Saut

  • Le 25 juin 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    A. Fernandez-Bertolin\, Université du Pays Basque/EHU.
    Three balls inequalities for discrete Schrödinger

  • Le 25 juin 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    -
    [Séminaire CSM] Créneau libre

  • Le 30 juin 2020 à 14:00
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    L. Le Treust
    On the semiclassical spectrum of the Dirichlet-Pauli operator
    This talk is devoted to semiclassical estimates of the eigenvalues of the Pauli operator on a bounded open set whose boundary carries Dirichlet conditions. Assuming that the magnetic field is positive and a few generic conditions, we establish the simplicity of the eigenvalues and provide accurate asymptotic estimates involving Bergman-Hardy spaces associated with the magnetic field.
  • Le 24 juillet 2020 à 14:00
  • Soutenances
    Salle de Conférences
    Yulin CAI
    Sujet : "Points entiers sur les courbes modulaires, les modules singuliers et l'inégalité conducteur-discriminant". Directeur de thèse : Yuri Bilu, co-directeur : Qing Liu

  • Le 28 juillet 2020 à 10:00
  • Soutenances
    Dipartimento di Matematica "Federigo Enriques - Milano - Italia
    Davide MARANGONI
    Sujet : "Cohomologie de DeRham derivée". Directeur de thèse : Baptiste Morin. Co-directeur : Fabrizio Andreatta

  • Le 10 septembre 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    -
    Réunion de rentrée du Séminaire d'Analyse

  • Le 17 septembre 2020 à 10:00
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    -
    réunion rentrée séminaire EDP

  • Le 17 septembre 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Nikolai Nikolski\, IMB\, Université de Bordeaux
    100 ans des distributions asymptotiques type Szegö
    Il y a deux approches aux théorèmes classiques de distribution des spectres type Szegö - celle de l'analyse complexe et puis des algèbres C^*. En les comparant brièvement, je passerai ensuite aux matrices de Toeplitz sur les groupes discrets. En particulier, je traiterai les matrices de "Toeplitz-multiplicatives" {s(k/n)} à l'aide des approximations de Følner. Les résultats s'appliquent aux systèmes de fonctions dilatées f(nx), ainsi qu'à l'intégrabilité de la fonction zeta le longue des droites verticales. L'exposé est basé sur un article avec A.Pushnitski (KCL), St.Pétersbourg Math. J., 2020.
  • Le 18 septembre 2020 à 10:00
  • Soutenances
    Salle de Conférences
    Sergio CORRIDORE
    Sujet :"Real data calibration and floating potential model in the context of electroporation". Directeur de thèse : Clair Poignard, co-directrice : Annabelle Collin.

  • Le 22 septembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Nicolas Mascot Trinity College Dublin
    Modular Galois representations p-adically using Makdisi's moduli-friendly forms
    We will present a p-adic method to compute Galois representations attached to modular forms. This method compares very favourably to the better-known complex-analytic approach. The main ingredient is the use of “moduli-friendly" forms introduced by Makdisi, which allow us to evaluate modular forms at p-adic points of modular curves, and thus to compute in the Jacobian of modular curves without writing down any equations nor q-expansions.
  • Le 24 septembre 2020 à 15:30
  • Le Colloquium
    Salle de Conférences
    Sébastien Gouezel Nantes
    Reporté à une date ultérieure

  • Le 25 septembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférences
    Francesco Campagna Copenhague
    Singular moduli and $S$-units
    A remarkable property of singular invariants of CM elliptic curves (singular moduli) is that they are algebraic integers. Hence it makes sense to ask, for a fixed set of rational primes S, how many singular moduli are S-units. When the set S is empty, Yu. Bilu, P. Habegger and L. Kühne have answered this question by proving that singular units do not exist. What happens now if we allow S to be a non-empty set of primes? We will discuss this problem and give partial answers.
  • Le 1er octobre 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Julie Delon MAP5\, Univ. Paris Descartes
    Une distance de Wasserstein entre mélanges de gaussiennes et quelques applications en traitement d'image
    Les modèles de mélanges de gaussiennes (GMM) s'avèrent particulièrement utiles pour représenter des distributions de probabilité complexes de données réelles. Par exemple, en traitement d'images, de nombreux travaux utilisent des GMM pour représenter des distributions de patchs dans les images, et ces modèles sont utilisés comme a priori pour la restauration d'image ou la synthèse de texture. Le transport optimal et les distances de Wasserstein sont aujourd'hui massivement utilisés pour analyser des statistiques extraites des images ou comme métriques en apprentissage profond. Si le transport optimal peut être utilisé pour définir des géodésiques entre GMM, les interpolées ainsi définies ne conservent pas la propriété d'être des mélanges de gaussiennes. Afin de conserver cette propriété, nous définissons une nouvelle distance entre mélanges en restreignant l'ensemble des mesures de couplage à des GMM dans la formulation originale du transport optimal. De manière surprenante, on montre que cette distance entre mélanges peut se réécrire sous la forme d'un problème de transport discret, ce qui la rend simple à calculer même en grande dimension. On étudie ses propriétés, le problème multi-marginal associé et les barycentres pour cette formulation. Finalement, on illustre son utilisation en traitement d'images.
  • Le 1er octobre 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Sebastian Tapia IMB
    Wild dynamics and Asymptotically separated sets
    Let $X$ be a separable infinite dimensional (real or complex) Banach space. Augé in 2012 constructed a bounded operator on $X$ such that the set $A_T:=\{x\in X:~ \|T^nx\|\to \infty\}$ is not dense and has nonempty interior. Moreover, he introduced the notion of wild operators. In this talk we study the class of wild operators and we introduce the notion of asymptotically separated sets, which allows us to construct operators with non-intuitive dynamics. Specifically, operators for which the set $A_T$ and the set of recurrent points form a partition of the space.
  • Le 2 octobre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférence (en visio)
    Francesca Balestrieri American University of Paris
    Strong approximation for homogeneous spaces of linear algebraic groups
    Building on work by Yang Cao, we show that any homogeneous space of the form $G/H$ with $G$ a connected linear algebraic group over a number field $k$ satisfies strong approximation off the infinite places with étale-Brauer obstruction, under some natural compactness assumptions when $k$ is totally real. We also prove more refined strong approximation results for homogeneous spaces of the form $G/H$ with $G$ semisimple simply connected and $H$ finite, using the theory of torsors and descent. (This latter result is somewhat related to the Inverse Galois Problem.)
  • Le 6 octobre 2020 à 14:00
  • Informations Diverses
    Salle de Conférences
    -
    Après-midi de rentrée de l'IMB en l'honneur des nouveaux doctorants et post-doctorants
    . Accueil des nouveaux membres du laboratoire . Présentation des nouveaux doctorants et post-doctorants par les responsables d'équipe . Intervention de Bill Allombert Crystal 2020 du CNRS
  • Le 8 octobre 2020 à 11:00
  • Séminaire Recherche Opérationnelle - Probabilités et Statistiques
    Salle 2
    Xavier Blanchot PhD student\, IMB\, OptimAl
    Benders by batch: an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs..
    We introduce a new exact algorithm based on Benders decomposition to solve two-stage stochastic linear programs. We propose to solve only a few number of subproblems at each iteration, and develop and easy and exact framework thanks to the multicut formulation of Benders decomposition. We propose three primal stabilization methods for the algorithm. We perform an extensive computational study on six large-scale benchmarks of stochastic optimization literature. Results show the efficiency of the method compared to three classical alternative algorithms and significant time saving provided by its primal stabilization.
  • Le 8 octobre 2020 à 16:30
  • Séminaire Lambda
    Salle de conférence
    TAPIA SEBASTIAN IMB
    Self-contracted dynamics and extensions
    La dynamique auto-contractée a été introduite en 2010. Il s'agit d'une propriété métrique qui est un cadre abstrait pour plusieurs dynamiques issues de l'optimisation. La rectifiabilité des courbes auto-contractées était la question principale de ce phénomène, qui a été établi en 2015 pour les espaces euclidiens de dimension finie et en 2017 pour les espaces normés de dimension finie. Dans cet exposé, nous présentons quelques résultats concernant la dynamique auto-contractée, les idées principales de la technique euclidienne de rectifiabilité et nous explorons différentes extensions de la notion d'auto-contraction.
  • Le 8 octobre 2020 à 17:00
  • Séminaire des doctorant·es
    Salle de Conférences
    Sebastián Tapia IMB
    Self-contracted dynamics and extensions
    Self-contracted dynamics were introduced in 2010. This is a metric property which is an abstract framework for several dynamics that come from optimization. The rectifiability of self-contracted curves was the main question about this phenomena, which was stablished in 2015 for finite dimensional Euclidean spaces and in 2017 for finite dimensional normed spaces. In this talk we present some results concerning self-contracted dynamics, the main ideas of the euclidean technique for rectifiability and we explore different extensions of the self-contracted notion.
  • Le 9 octobre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle de Conférence (en visio)
    Efthymios Sofos Glasgow
    Schinzel Hypothesis with probability 1 and rational points
    Joint work with Alexei Skorobogatov, preprint: https://arxiv.org/abs/2005.02998. Schinzel's Hypothesis states that every integer polynomial satisfying certain congruence conditions represents infinitely many primes. It is one of the main problems in analytic number theory but is completely open, except for polynomials of degree 1. We describe our recent proof of the Hypothesis for 100% of polynomials (ordered by size of coefficients). We use this to prove that, with positive probability, Brauer--Manin controls the Hasse principle for Châtelet surfaces.
  • Le 13 octobre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Christopher Doris Heilbronn Institute and University of Bristol
    Computing Galois groups over p-adic fields
    We give an overview of the history of computing Galois groups over p-adic fields, with some diversions to recent progress over the rational field. We focus on the "resolvent method," a family of techniques to compute Galois groups, and present a recent algorithm to do this in general over p-adic fields, the first of its kind. This algorithm greatly increases the degree of polynomial that can be routinely handled, and for example has been used to extend existing databases of Galois groups of p-adic fields to include all degree 18, 20 and 22 extensions of the 2-adic field. The implementation and tables of results are available on the speaker's website.
  • Le 13 octobre 2020 à 11:15
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    R. Höfer
    Effective equations for fluids with many small particles
    Particles immersed in fluids are ubiquitous in nature and technology. Depending on the model, various effective equations may occur in the limit of many small particles. One of the most well-studied models are the incompressible Stokes equations with no slip bounday conditions. In this case, the individual drag forces of the particles give rise to a collective force leading to the Brinkman equations or Darcy's law. However, the same collective effect can also be observed for non-creeping flows such as the incompressible and even the compressible Navier-Stokes equations. In this talk we will discuss in which cases the local fluid flow around each particle can be well approximated by the incompressible Stokes equations such that the Stokes-Brinkman force prevails. The talk is based on joint work with Arianna Giunti, Jonas Jansen, Karina Kowalczyk, Sebastian Schwarzacher and Juan Velázquez.
  • Le 15 octobre 2020
  • Manifestations Scientifiques
    Organizing committee : Quentin Griette (Université de Bordeaux)\, Jane Heffernan (York University)\, Yvon Maday (Sorbonne Université)\, Pierre Magal (Université de Bordeaux)\, Jianhong Wu (York University)
    Infectious Disease Outbreaks

  • Le 15 octobre 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Anas Barakat Télécom ParisTech
    Convergence and Dynamical Behavior of the ADAM Algorithm for Non-Convex Stochastic Optimization
    Adam is a popular variant of stochastic gradient descent for finding a local minimizer of a function. In the constant stepsize regime, assuming that the objective function is differentiable and non-convex, we establish the convergence in the long run of the iterates to a stationary point under a stability condition. The key ingredient is the introduction of a continuous-time version of Adam, under the form of a non-autonomous ordinary differential equation. This continuous-time system is a relevant approximation of the Adam iterates, in the sense that the interpolated Adam process converges weakly towards the solution to the ODE. The existence and the uniqueness of the solution are established. We further show the convergence of the solution towards the critical points of the objective function and quantify its convergence rate under a Lojasiewicz assumption. Then, we introduce a novel decreasing stepsize version of Adam. Under mild assumptions, it is shown that the iterates are almost surely bounded and converge almost surely to critical points of the objective function. Finally, we analyze the fluctuations of the algorithm by means of a conditional central limit theorem.
  • Le 15 octobre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Isabelle Cheylan
    [Séminaire CSM] Optimisation de forme avec la méthode adjointe appliquée aux équations de Lattice-Boltzmann en aérodynamique
    Le travail présenté a pour objectif le développement d'un solveur adjoint dans ProLB, un logiciel de mécanique des fluides basé sur la méthode de Lattice-Boltzmann. Ce solveur adjoint, basé sur les multiplicateurs de Lagrange, permet de calculer les sensibilités surfaciques des efforts aérodynamiques d'un obstacle par rapport à la forme de celui-ci. Dans un premier temps, l'étude de cas 2D laminaires permet de détailler le développement du solveur adjoint étape par étape. Les complexités apportées par l'étude d'un cas 3D turbulent à grandes échelles sont ensuite expliquées, puis les modifications apportées au solveur adjoint sont détaillées afin de pouvoir l'utiliser dans un contexte industriel. Les différentes hypothèses retenues pour le développement du solveur adjoint sont justifiées et documentées, afin d'arriver à un solveur adjoint opérationnel en industrie. Le solveur adjoint permet ainsi de savoir où déformer un véhicule afin de le rendre plus performant en terme d'aérodynamique. L'objectif final est de déformer, par des techniques de morphing, la forme d'un véhicule afin d'améliorer la force de traînée agissant sur celui-ci.
  • Le 15 octobre 2020 à 14:00
  • Séminaire d'Analyse
    Salle de Conférences
    Michel Bonnefont IMB
    Inégalités de covariance pour des fonctions convexes et d'autres classes de fonctions.
    Dans cet exposé, on discutera certaines inégalités de covariance. Le point de départ est l'inégalité suivante démontrée par Hu puis Hargé pour la gaussienne dans R^d: Si f et g sont gaussiennes alors: cov(f,g) \geq cov(f,x) . cov(g,x). Le premier résultat de cet exposé est de montrer que cette inégalité est en fait valable pour toute mesure en dimension 1. Dans la suite de cet exposé nous essaierons de généraliser cette inégalité pour d'autres classes de fonctions et d'autres mesures produits. (travail en cours avec Erwan Hillion et Adrien Saumard)
  • Le 15 octobre 2020 à 15:30
  • Le Colloquium
    Salle de Conférences
    Jane Heffernan
    Vaccination and Waning Immunity
    Immunity is gained from infection and/or vaccination. An effect of immunity is in the ability of a host's body to resist infection. At the population level this is realized through the measurement of ‘herd immunity' – when a sufficient fraction of the population is immune to an infectious disease so as to indirectly protect the entire population. The protective effects of immunity can decay over time -- immunity can wane, allowing asymptomatic or mild infections, or severe infections if a decay to full susceptibility is achieved. In this talk I will review some basic models of immunity from the literature. These models will then be extended to studies of the effects of waning immunity on specific infectious diseases (i.e., pertussis, measles, and COVID-19) and the feasibility of herd immunity.
  • Le 15 octobre 2020 à 16:30
  • Séminaire Lambda
    Salle de conférence
    POLIAKOVA Dasha University of Copenhaguen
    From polyhedra to operads
    Je construirai des associaèdres et des multiplièdres - polytopes responsables de la non-associativité en algèbre. Je présenterai donc les opérades en général et l'opérade A-infini en particulier. Si le temps le permet, je discuterai quelques contractions d'associaèdres et de multiplièdres.
  • Le 15 octobre 2020 à 17:00
  • Séminaire des doctorant·es
    Salle de Conférences
    Dasha Poliakova University of Copenhaguen
    From polyhedra to operads
    I will construct associahedra and multiplihedra - polytopes which are responsible for non-associativity in algebra. I will therefore introduce operads in general and A-infinity operad in particular. If time permits, I will discuss some contractions of associahedra and multiplihedra.
  • Le 16 octobre 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Anne Lonjou Orsay
    Action du groupe de Cremona sur un complexe cubique CAT(0)
    Bien que le groupe des transformations birationnelles (isomorphismes entre deux ouverts) du plan projectif, appelé groupe de Cremona, soit issu de la géométrie algébrique, son action sur un espace hyperbolique a permis de grandes avancées dans l'étude de ce groupe. Récemment, avec Christian Urech, nous avons construit un complexe cubique CAT(0) sur lequel ce groupe agit de façon non-triviale et très naturellement. Dans cet exposé, nous construirons ce complexe et nous verrons quels types de résultats nous pouvons ainsi obtenir.
  • Le 16 octobre 2020 à 14:00
  • Soutenances
    Salle de Conférences
    Mohamed BENKIRANE
    Sujet : "Optimisation des moyens dans la recomposition commerciale de dessertes TER". Directeur de these : François Clautiaux, co-directeur : Boris Detienne

  • Le 16 octobre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 2
    Elena Berardini LIX - École polytechnique
    Codes géométriques sur des familles de surfaces algébriques
    Le but de cet exposé est de borner la distance minimale de codes géométriques algébriques construits sur des surfaces définies sur les corps finis. Dans un premier temps, nous étudions les codes sur deux grandes familles de surfaces algébriques : celles dont le diviseur anti-canonique est strictement nef ou anti-nef et celles qui ne contiennent pas de courbes irréductibles de petit genre. Puis, nous améliorerons ces bornes dans des familles particulières, notamment pour les surfaces minimales fibrées et les surfaces abéliennes, en utilisant la géométrie propre à ces surfaces. Il s'agit d'un travail conjoint avec Y. Aubry, F. Herbaut et M. Perret, preprint: https://arxiv.org/abs/1912.07450, à paraître dans Contemporary Maths, AMS.
  • Le 20 octobre 2020 à 10:00
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    -
    Journée rentrée équipe EDP-Physique Mathématique
    10h-10h15 Thomas Normand, Retour à l'équilibre pour l'équation de Boltzmann linéarisée semiclassique avec relaxation 10h15-10h30 Pei Su, Control of small-amplitude water waves in a rectangular domain 10h30-10h45 Tifanie Carlier, Modélisation d'un système de dégivrage par la méthode des frontières décalées 10h45-11h00 Pierre Brun, Long time existence for the semilinear Klein-Gordon equation 11h00-11h15 Matthieu Pauron, Problème d'eaux-mortes et modèles asymptotiques 11h15-11h30 Nacer Aarach, Approximation hydrostatique pour le système primitive et MHD 11h30-11h45 Valentin Ayot, Méthodes cinétiques appliqués à l'étude de certains comportements collectifs
  • Le 20 octobre 2020 à 10:00
  • Soutenances
    Leiden, Pays-Bas
    Thibault POIRET
    Sujet : "Modèles de Néron en dimension supérieure: courbes nodales et leurs Jacobiennes, changement de base modérément ramifié". Directeur de thèse : Qing Liu, co-directeur : Bas Edixhoven

  • Le 20 octobre 2020 à 13:30
  • Direction
    Salle de Conférences
    -
    Ordre du jour du conseil scientifique de mardi 20 octobre :1/Présentation de la fédération Margaux par Raphaël Loubère2/Discussion sur la communication au sein du conseil scientifique et du laboratoire

  • Le 22 octobre 2020 à 14:00
  • Séminaire d'Analyse
    Salle 2
    Marcu-Antone Orsoni
    Séparation de singularités pour l'espace de Bergman et application à la théorie du contrôle
    Soit $\Omega_1$ et $\Omega_2$ deux ouverts de $\mathbb{C}$ d'intersection non-vide. On peut se demander si étant donnée une fonction $f$ holomorphe sur $\Omega_1 \cap \Omega_2$, il existe deux fonctions $f_1$ et $f_2$ holomorphes respectivement sur $\Omega_1$ et $\Omega_2$ telles que $f = f_1 + f_2$ sur $\Omega_1 \cap \Omega_2$. Ce problème est connu sous le nom de problème de séparation de singularités et a été résolu en 1935 par N. Aronszajn qui a montré que la réponse est positive quelque soit les ouverts $\Omega_1$ et $\Omega_2$. Il peut être également posé dans un espace de Banach X de fonctions holomorphes : étant donnée une fonction $f \in X(\Omega_1 \cap \Omega_2)$, existe-t-il deux fonctions $f_1 \in X(\Omega_1)$ et $f_2 \in X(\Omega_2)$ telles que $f = f_1 + f_2$ ? Dans cet exposé nous nous intéresserons au cas de l'espace de Bergman, c'est-à-dire des fonctions holomorphes et de carré intégrable. Nous donnerons des théorèmes de séparation de singularités pour les polygones et pour une large classe d'ouverts convexes. Finalement nous appliquerons ces résultats à la description de l'espace atteignable de l'équation de la chaleur. Travail en commun avec Andreas Hartmann.
  • Le 22 octobre 2020 à 14:00
  • Soutenances
    Salle de Conférences
    Paul GENIET
    Sujet : "Analyse spectrale de quelques opérateurs de Schrödinger magnétiques fibrés". Directeur de thèse : Vincent Bruneau, co-directeur : Nicolas Popoff.

  • Le 22 octobre 2020 à 17:00
  • Séminaire des doctorant·es
    Salle de Conférences
    Ludovic Monier Université de Toulouse
    Théorèmes HKR en géométrie dérivée
    Après une rapide introduction à la géométrie dérivée, j'exposerai les différentes versions du théorème HKR, en caractéristique nulle, et aussi en caractéristique quelconque avec le cercle filtré. Si le temps le permet, on abordera les possibilités d'existence d'analogues cristallin ou prismatique de ce cercle.
  • Le 23 octobre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    Salle 2 (en visio)
    Raphael Steiner ETH\, Zurich
    Fourth moments of eigenforms, the sup-norm problem, and theta functions
    It is a classical problem in harmonic analysis to bound L^p-norms of eigenfunctions of the Laplacian on (compact) Riemannian manifolds in terms of the eigenvalue. A general sharp result in that direction was given by Hörmander and Sogge. However, in an arithmetic setting, one ought to do better. Indeed, it is a classical result of Iwaniec and Sarnak that exactly that is true for Hecke-Maass forms on arithmetic hyperbolic surfaces. They achieved their result by considering an amplified second moment of Hecke eigenforms. Their technique has since been adapted to numerous other settings. In my talk, I shall explain how to use Shimizu's theta function to express a fourth moment of Hecke eigenforms in geometric terms suitable for further analysis. In joint work with Ilya Khayutin and Paul Nelson, we give sharp bounds for said fourth moments in the weight and level aspect. As a consequence, we improve upon the best known bounds for the sup-norm in these aspects. In particular, we prove a stronger than Weyl-type subconvexity result.
  • Le 23 octobre 2020 à 14:00
  • Soutenances
    Salle de Conférences
    Loïc LABACHE
    Sujet : "Création d'atlas des réseaux cérébraux à large échelle sous-tendants les fonctions cognitives à partir d'une base de données de neuroimagerie fonctionnelle de 297 sujets sains. Application à l'étude de la variabilité inter-individuelle du langage". Directeur de thèse : Jérôme Saracco, co-directeur : Marc Joliot

  • Le 26 octobre 2020
  • Manifestations Scientifiques
    Salle de Conférences
    Organisateur : Edoardo Provenzi
    SEME Bordeaux
    Du 26 au 30 octobre, l'IMB héberge la SEME, semaine "Semaines d'Etude Mathématiques – Entreprises". La SEME réunit, autour de sujets exploratoires, des entreprises et des jeunes chercheuses et chercheurs (doctorat en cours ou récent). Des industriels viennent présenter le matin de lundi 26 des problèmes ouverts, dont la formulation même n'est pas toujours aboutie, sur lesquels travaillent de petits groupes de jeunes chercheurs et chercheuses pendant une semaine. L'objectif est de proposer des embryons de solutions ou des pistes possibles, qui seront présentés le matin de vendredi 30. Les entreprises et les doctorants intéressés à participer sont invités à contacter le facilitateur AMIES du Sud Ouest qui organise cette SEME, Edoardo Provenzi, professeur à l'IMB à l'adresse mail edoardo.provenzi(at)math.u-bordeaux.fr .
  • Le 26 octobre 2020 à 14:00
  • Manifestations Scientifiques
    Amphi du LaBRI
    Organisation : Vincent Delecroix\, Elise Goujard\,
    Mini rencontre ANR MoDiff

  • Le 2 novembre 2020
  • Direction
    Amphi du LaBRI
    -
    (02/11) Venue à l'IMB, nouvelles consignes pour le confinementLe télétravail est étendu à 5 jours. Il devient la règle pour toutes les activités qui le permettent. Seules les activités nécessitant impérativement une présence sur site continueront à se dérouler en présentiel, dans le strict respect des consignes sanitaires et des gestes barrières permettant de limiter la propagation du virus. Les autorisations de déplacement de l'université se trouvent sur le site https://www.u-bordeaux.fr/Urgence/Espace-d-information-CoronavirusLes activités nécessitant impérativement une présence sur site incluent notamment :- une rencontre entre doctorant et encadrant ;- une soutenance de thèse en présence d'une partie du jury ;- une visite à la bibliothèque entre 10h et 16h sur rendez-vous à l'adresse bibli@math.u-bordeaux.fr ;- l'utilisation du matériel de visioconférence dans une salle ;- la venue pour chercher du matériel informatique, sur rendez-vous à l'adresse help@math.u-bordeaux.fr..

  • Le 3 novembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Samuele Anni Université Aix-Marseille
    Isomorphismes de représentations galoisiennes modulaires et graphes
    Dans cet exposé, je vais expliquer comment tester efficacement et effectivement si deux représentations galoisiennes modulaires du groupe absolu de Galois des rationnels sont isomorphes. En particulier, je présenterai de nouvelles bornes optimales sur le nombre de traces à tester. Je discuterai également brièvement des graphes des isomorphismes, des résultats associés sur les algèbres de Hecke et de la construction d'une base de données de représentations.
  • Le 5 novembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bochra Mejri
    [Séminaire CSM] Identification of geometric flaws and elastic properties in linear elasticity
    This talk presents a panorama of my research related to the two-dimensional linear elasticity system. The first part is concerned with a geometric inverse problem: the identification of voids under Navier's boundary conditions (i.e. the elastic solid can slide in tangential direction while in the normal direction the displacement is clamped) from the knowledge of partially over-determined boundary data. Sensitivity analysis methods (shape derivative, topological derivative) are developed to spot numerically the flaws. Secondly, a parametric inverse problem is studied: the reconstruction of interface stiffness parameter (i.e. the interface tractions are continuous while the displacement is discontinuous across the debonded region and proportional to the interface traction). Lipschitz stability estimate is established and based on a new Carleman's inequality with suitable weight functions. Finally, I am interested in quantifying the elastic properties of intensely fractured rocks around tectonic faults. The density and complexity of the natural fracture networks over a wide range of spatial scales is modeled by a statistical scaling model calibrated with field observations and measurements. The effective parameters of the medium are estimated by the stochastic homogenization method.
  • Le 6 novembre 2020 à 11:00
  • Séminaire de Géométrie
    VIsio
    Jean Kieffer IMB
    Quelques aspects algorithmiques de l'espace de modules des surfaces abéliennes
    L'espace de modules $A_2$ des surfaces abéliennes principalement polarisées est, sur $\mathbb C$, le quotient du demi-espace de Siegel $H_2$ par le groupe modulaire $Sp_4(\mathbb Z)$. Dans cet exposé, j'introduirai les équations modulaires de niveau l, qui décrivent la sous-variété de $A_2$ x $A_2$ constituée des surfaces abéliennes l-isogènes. Ce sont des polynômes multivariés à coefficients rationnels, dont le degré et la hauteur des coefficients sont connus depuis récemment. Puis nous verrons comment les utiliser pour calculer toutes les surfaces abéliennes l-isogènes à une surface abélienne A donnée: de façon surprenante, même lorsque A est définie sur un corps fini, la méthode la plus efficace passe par des approximations complexes.
  • Le 6 novembre 2020 à 14:00
  • Soutenances
    Salle de Conférences
    Corentin DARREYE
    Sujet : "Sur la répartition des coefficients des formes modulaires de poids demi-entier". Directeur de thèse : Guillaume Ricotta, co-directeur : Florent Jouve

  • Le 10 novembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Raphaël Pagès IMB
    Calcul efficace des polynômes caractéristiques des p-courbures d'un opérateur différentiel à coefficients entiers
    Nous présentons un nouvel algorithme permettant de calculer les polynômes caractéristiques des $p$-courbures d'un opérateur différentiel à coefficients entiers pour tout $p$ premier inférieur à un entier $N$ donné, en temps quasi-linéaire, donc quasi-optimal, en $N$. L'algorithme présenté se base sur les travaux de A. Bostan, X. Caruso et E. Schost ramenant le calcul de cet invariant au calcul d'une factorielle de matrices, ainsi que sur la technique de calcul de factorielles développée par E. Costa, R. Gerbicz et D. Harvey.
  • Le 10 novembre 2020 à 11:15
  • Séminaire de EDP - Physique Mathématique
    visio-conférence
    A. Koenig
    Contrôlabilité de quelques équations aux dérivées partielles peu dissipatives
    On sait depuis 1995 et les travaux de Lebeau-Robbiano et Fursikov-Immanuvilov que l'équation de la chaleur à contrôlable à zéro en temps arbitrairement petit. Nous discuterons du cas de l'équation de la chaleur fractionnaire, et aussi de quelques équations paraboliques qui ressemblent à l'équation de la chaleur mais qui se comportent comme l'équation de la chaleur fractionnaire : l'équation de Baouendi-Grushin parabolique et quelques équations de type Kolmogorov. Nous montrerons en particulier comment on peut exhiber des conditions géométriques nécessaires à la contrôlabilité de ces équations grâce des outils (relativement) simples d'analyse complexe.
  • Le 10 novembre 2020 à 11:15
  • Séminaire d'Analyse
    Salle de Conférences
    Armand Koenig Univ. Paris Dauphine
    Séminaire commun Analyse et EDP, jour exceptionnel pour le séminaire d'analyse...Titre:TBA

  • Le 12 novembre 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Arthur Mensch DMA\, École Normale Supérieure
    Online Sinkhorn: Optimal Transport distances from sample streams
    Optimal Transport (OT) distances are now routinely used as loss functions in ML tasks. Yet, computing OT distances between arbitrary (i.e. not necessarily discrete) probability distributions remains an open problem. This paper introduces a new online estimator of entropy-regularized OT distances between two such arbitrary distributions. It uses streams of samples from both distributions to iteratively enrich a non-parametric representation of the transportation plan. Compared to the classic Sinkhorn algorithm, our method leverages new samples at each iteration, which enables a consistent estimation of the true regularized OT distance. We provide a theoretical analysis of the convergence of the online Sinkhorn algorithm, showing a nearly-O(1/n) asymptotic sample complexity for the iterate sequence. We validate our method on synthetic 1D to 10D data and on real 3D shape data.
  • Le 13 novembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Marta Pieropan Utrecht
    Campana points, a new number theoretic challenge
    This talk introduces Campana points, an arithmetic notion, first studied by Campana and Abramovich, that interpolates between the notions of rational and integral points. Campana points are expected to satisfy suitable analogs of Lang's conjecture, Vojta's conjecture and Manin's conjecture, and their study introduces new number theoretic challenges of a computational nature.
  • Le 13 novembre 2020 à 15:30
  • Séminaire de Géométrie
    VIsio
    Quentin Gendron Mexique
    Équation de Pell-Abel et applications
    Depuis son étude par Abel en 1826, l'équation de Pell-Abel sur les courbes hyperelliptiques est apparue dans des problèmes très divers. Parmi ceux-ci, je souhaite expliquer dans cet exposé, comment l'étude de certaines pluri-différentielles sur les courbes hyperelliptiques fait intervenir cette équation. Une fois ce lien établi, je détaillerai une méthode qui permet d'obtenir les solutions de cette équation sur certaines courbes. Cette méthode fait intervenir les différentielles abéliennes, les polynômes de Tchebychev et les applications conformes. Cet exposé se basera principalement sur un article éponyme.
  • Le 17 novembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Fredrik Johansson IMB
    Calcium: computing in exact real and complex fields
    Calcium is a C library for real and complex numbers in a form suitable for exact algebraic and symbolic computation. Numbers are represented as elements of fields $\mathbb{Q}(a_1,\ldots,a_n)$ where the extension numbers $a_k$ may be algebraic or transcendental. The system combines efficient field arithmetic with automatic construction of fields and ideals of algebraic relations, resulting in a practical computational model of $\mathbb{R}$ and $\mathbb{C}$ in which equality is rigorously decidable for a large class of numbers which includes $\overline{\mathbb{Q}}$ as a subset.
  • Le 19 novembre 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle 1
    Quentin Mérigot Laboratoire de Mathématiques d'Orsay
    Stabilité quantitative en transport optimal
    Un théorème de Brenier affirme qu'étant donnée une densité de probabilité rho et une mesure de probabilité mu sur R^d, tous deux à support compact, il existe un unique plan de transport optimal T_\mu pour le coût quadratique, transportant rho vers mu. Nous nous intéressons à l'utilisation de T_\mu pour représenter une mesure mu: comme T_\mu appartient à l'espace de Hilbert L^2(\rho,R^d), ce plongement mu -> T_\mu permet en principe d'appliquer toute méthode statistique hilbertienne (analyse en composante principale, k-moyennes, apprentissage de dictionnaire) à des données à valeur mesures, e.g. des familles de nuages de points. Pour justifier cette approche, il est nécessaire de comprendre les propriétés de l'application mu -> T_\mu. Il est connu que l'application mu -> T_\mu est continue pour la topologie faible sur les mesures et la norme L^2(\rho) entre les plans de transport, mais la démonstration ne donne aucune information sur le module de continuité. Dans cet exposé, nous montrerons en utilisant des outils d'analyse fonctionnelle que T_\mu dépend de manière Hölderienne de mu pour un exposant de Hölder indépendant de la dimension. Travail en collaboration avec A. Delalande et F. Chazal.
  • Le 19 novembre 2020 à 14:00
  • Séminaire de l'équipe Dynamique des Populations
    https://u-bordeaux-fr.zoom.us/j/88352607665
    Lara Abi Rizk
    Asymptotic speed of spread for a nonlocal evolutionary-epidemic system

  • Le 19 novembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Solene Bulteau
    [Séminaire CSM] Développement et analyse de schémas numériques préservant les régimes asymptotiques de diffusion linéaire et non linéaire
    L'objectif de ces travaux est de construire et analyser des schémas numériques capables de discrétiser les solutions de systèmes de lois de conservation hyperboliques avec terme source. La propriété principale recherchée dans ces travaux est la préservation de l'asymptotique, c'est-à-dire que les schémas développés doivent rester précis en régime de diffusion, à savoir en temps long et terme source raide. La première partie de cet exposé est consacrée à la présentation d'un résultat de convergence numérique rigoureux pour un schéma discrétisant les solutions du p-système. Le taux de convergence ainsi obtenu est exprimé explicitement et est en accord avec les résultats déjà connus dans les cadres continu et semi-discret. La seconde partie de cet exposé est dédiée à la présentation de deux schémas préservant l'asymptotique pour les équations de Saint-Venant avec terme source de friction de Manning. A la différence du p-système, l'opérateur de dérivation intervenant dans la limite de diffusion est non linéaire, ce qui rend plus difficile le développement de schémas capables de la préserver. La première méthode exposée est développée à partir d'une discrétisation HLL dans laquelle de la viscosité numérique bien choisie a été ajoutée pour que, à la limite, celle-ci discrétise l'asymptotique correcte. Le deuxième schéma présenté est, lui, construit de sorte à ce que tous les états stationnaires soient préservés. Je montrerai qu'une simple modification dans la discrétisation du terme source permet également à ce schéma de préserver la limite de diffusion. Ce travail exhibe un lien entre la préservation des états stationnaires et celle de l'asymptotique de diffusion qui sont, à la base, deux propriétés de natures très différentes.
  • Le 20 novembre 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Mario Shannon Dijon
    Exposé reporté

  • Le 20 novembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Xenia Spilioti Aahrus
    Non-commutative harmonic analysis, spectral theory of automorphic forms and applications
    In this talk we will present some recent results on the dynamical zeta functions of Ruelle and Selberg and the Fried's conjecture. Moreover, we will present topics related to spectral identities for Fourier coefficients of automorphic forms, and methods developed by Reznikov to derive Rankin-Selberg identities.
  • Le 24 novembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Anne-Edgar Wilke IMB
    Recouvrements optimaux d'ensembles de Siegel tronqués par des boules euclidiennes
    Étant donné un groupe algébrique $G$ agissant sur un espace affine $V$, il arrive que l'ensemble $V(\mathbb{Z})/G(\mathbb{Z})$ des orbites entières paramètre des objets arithmétiques et soit donc intéressant à énumérer. Une façon de s'y prendre consiste à expliciter un domaine fondamental de l'action de $G(\mathbb{Z})$ sur $V(\mathbb{R})$ et à y rechercher les points entiers. Pour cela, on peut essayer de recouvrir ce domaine fondamental par une famille de boules euclidiennes de rayon constant dont le cardinal soit du même ordre de grandeur que le nombre de points entiers. Je montrerai comment mettre en œuvre cette stratégie dans le cas simple de l'action à droite de $\mathrm{GL}_n$ sur $\mathrm{M}_n$, dont les orbites entières paramètrent les sous-modules de $\mathbb{Z}^n$, et pour laquelle on dispose de domaines fondamentaux approchés faciles à décrire, à savoir les ensembles de Siegel.
  • Le 24 novembre 2020 à 11:15
  • Séminaire de EDP - Physique Mathématique
    Salle de Conférences
    Christophe Prange CNRS et Université Paris Cergy
    Régularité quantitative et phénomènes de concentration pour les équations de Navier-Stokes
    Dans cet exposé, je mettrai l'accent sur deux aspects liés de l'étude de la régularité des solutions des équations de Navier-Stokes en trois dimensions: (i) l'obtention d'estimations de régularité quantitatives, (ii) l'étude de phénomènes de concentration au voisinage de singularités. J'explorerai le lien entre ces deux questions et montrerai comment cela permet en particulier de quantifier un résultat de régularité de Seregin de 2012 faisant intervenir une norme critique pour le scaling des équations. De plus, il est possible par ces techniques de donner des bornes inférieures sur la vitesse d'explosion de certaines normes critiques au voisinage de singularités, dans le sillage des travaux de Tao en 2019. Cet exposé s'appuie sur des résultats récents obtenus en collaboration avec Tobias Barker (University of Warwick).
  • Le 26 novembre 2020 à 09:30
  • Soutenances
    Salle de Conférences
    Guillaume MARQUES
    Sujet :"Problèmes de tournées de véhicules sur deux niveaux pour la logistique urbaine : approches basées sur les méthodes exactes de l'optimisation mathématique". Directeurs de thèse : Rémy Dupas, Ruslan Sadykov.

  • Le 26 novembre 2020 à 14:00
  • Séminaire de l'équipe Dynamique des Populations
    https://u-bordeaux-fr.zoom.us/j/88564699953
    Gwenaël PeltierB
    Population facing a nonlinear environmental gradient: a perturbation approach
    We consider a population structured by both a spatial variable and a phenotypical trait. Our model takes into account the effects of migrations, mutations, growth and nonlocal competition. When the environment is assumed homogeneous, if the population survives, it spreads to the whole space, and we have a complete picture of the large-time propagation: the solution converges towards a front, which connects a positive steady state to zero, and spreads at a determined speed. This model was also recently studied in the case where, instead of being homogeneous, the environment presents a linear gradient, that is the optimal trait for survival depends linearly on the spatial variable. Part of the above results have been proved in this context, where the linear assumption is used in a crucial manner. Here, we consider that the optimal trait depends nonlinearly on the spatial variable. We construct a steady state and a front using perturbation technics, based on the homogeneous case. Our analysis provides some insights on how population adapts to this environmental change, and in particular reveals an interplay between the profile of the optimal trait and the selection pressure.
  • Le 26 novembre 2020 à 14:00
  • Soutenances
    Salle de Conférences
    Thomas COMETX
    Sujet : "Fonctions de Littlewood-Paley-Stein pour les opérateurs de Schrödinger et le laplacien de Hodge-de Rham sur des variétés noncompactes". Directeur de thèse : El Maati Ouhabaz

  • Le 26 novembre 2020 à 15:30
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Davide Torlo
    High order IMEX deferred correction residual distribution schemes for stiff kinetic problems.
    In this talk we study a class of kinetic models presented by Aregba-Driollet and Natalini, whose macroscopic limits are hyperbolic conservation laws. These models contain stiff relaxation terms which may produce spurious unphysical results. We present a high order scheme that can be used over the complete range of the relaxation parameter and, moreover, that can preserve the asymptotic limit of the physical model. To deal with stiff terms, it is natural to use an implicit time discretization. To get a high order scheme, we recast a (DeC) Deferred Correction approach. The spatial discretization comes from the Residual Distribution (RD) framework, a Finite Element based class of schemes that can recast many finite element, finite volume and discontinuous Galerkin schemes. Through these models, we can simulate, for instance Euler's equation, and we present an idea of an extension in the shallow water case. We have tested some example with different schemes, reaching the asymptotic preserving properties and the correct order of convergence for 1D and 2D.
  • Le 27 novembre 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Eveline Legendre Toulouse
    Exposé reporté

  • Le 27 novembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Ariyan Javanpeykar Mayence
    Hilbert's irreducibility theorem for abelian varieties
    We will discuss joint work with Corvaja, Demeio, Lombardo, and Zannier in which we extend Hilbert's irreducibility theorem (for rational varieties) to the setting of abelian varieties. Roughly speaking, given an abelian variety $A$ over a number field $k$ and a ramified covering $X$ of $A$, we show that $X$ has "less" $k$-rational points than $A$.
  • Le 27 novembre 2020 à 16:00
  • Soutenances
    Salle de Conférences
    Alexandre BAILLEUL
    Sujet : "Étude de la répartition des automorphismes de Frobenius dans les groupes de Galois". Directeur de thèse : Florent Jouve

  • Le 1er décembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Tommy Hofmann Saarland University
    The conjugacy problem in $mathrm{GL}(n, mathbb{Z})$
    We consider the problem of deciding whether two matrices are conjugate. If the coefficient ring is a field, this problem can be easily solved by using the Jordan normal form or the rational canonical form. For more general coefficient rings, the situation becomes increasingly challenging, both from a theoretical and a practical viewpoint. In this talk, we show how the conjugacy problem for integer matrices can be efficiently decided using techniques from group and number theory. This is joint work with Bettina Eick and Eamonn O'Brien.
  • Le 1er décembre 2020 à 13:30
  • Direction
    Salle de Conférences
    -
    Ordre du jour du conseil de laboratoire : 1) Approbation du compte-rendu du conseil du 3 novembre 2020 ;2) Discussion sur le budget 2021 de l'IMB ;3) Questions diverses.

  • Le 3 décembre 2020 à 11:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Raphaël Ducatez Université de Genève
    Spectre des graphes critiques d'Erdos Renyi
    Nous analysons le spectre de la matrice d'adjacence A du graphe aléatoire d'Erdős-Rényi G(N, d/N) dans le régime critique d = b log N. On établit une correspondance un à un entre les sommets de degré au moins 2d et les valeurs propres en dehors du bulk [-2, 2]. Cette correspondance implique une transition à un b* explicite. Pour d>b* log N, le spectre est contenu dans [-2, 2] et les vecteurs propres sont complètement délocalisés. Pour d< b* log N, une autre phase apparaît. Le spectre à l'extérieur de [-2, 2] est non vide et les vecteurs propres correspondants se concentrent autour des sommets de grand degré. En collaboration avec Antti Knowles et Johannes Alt
  • Le 3 décembre 2020 à 14:00
  • Séminaire d'Analyse
    Visio
    Christopher Shirley Paris Saclay
    Opérateurs de Schrödinger aléatoires stationnaires à petit désordre
    Dans cet exposé nous allons étudier les opérateurs de Schrödinger avec potentiel stationnaire et étudier l'existence d'ondes de Bloch stationnaires pour différent type de stationnarité et en particulier dans le cas aléatoire. Nous verrons que les ondes de Bloch de l'opérateur non perturbé semblent disparaitre à faible désordre dans le cas où les corrélations sont à courtes portées. Ce phénomène laisse entrevoir un problème de résonance, difficile à étudier faute de compacité. Nous allons montrer comment dans le cas Gaussien nous pouvons définir des notions de transport et construire des inégalités de Mourre pour les opérateurs non perturbés agissant sur l'espace de probabilité, et régulariser le problème pour donner une preuve spectrale de la décroissance des corrélations temporelles en temps cinétique.
  • Le 3 décembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Bertrand Michel
    [Séminaire CSM] Une approche statistique de l'analyse topologique des données
    L'analyse topologique des données (TDA) désigne un ensemble de méthodes et d'algorithmes dont l'objectif est l'estimation et l'exploitation des propriétés topologiques d'une forme géométrique. Dans une première partie de l'exposé, je proposerai une introduction aux principales méthodes de l'analyse topologique des données. Je présenterai en particulier la persistance homologique. Je donnerai ensuite quelques résultats et méthodes statistiques pour la TDA. Je présenterai enfin quelques exemples d'application de la TDA.
  • Le 4 décembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Gabriel Dill Oxford
    Torsion points on isogenous abelian varieties
    The Manin-Mumford conjecture, proven by Raynaud, predicted that a subvariety of an abelian variety over a field of characteristic zero contains a Zariski dense set of torsion points if and only if it is a union of torsion cosets, i.e. of translates of abelian subvarieties by torsion points. We study subvarieties of abelian schemes that contain a Zariski dense set of torsion points that lie on pairwise isogenous fibers. If the abelian scheme has maximal variation, conjectures of Zannier and Pink characterize such subvarieties. If everything is defined over the algebraic numbers, we prove one half of the conclusion of these conjectures: the geometric generic fiber of an irreducible such subvariety over its projection to the base is a union of torsion cosets. Our proof is based on a strategy due to Lang, Serre, Tate, and Hindry of using Galois automorphisms that act as homotheties on the torsion points. If the abelian scheme is a fibered power of the Legendre family of elliptic curves, this method yields explicit and uniform results. It also yields uniform Manin-Mumford results within a given isogeny class.
  • Le 8 décembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Salle 385
    Alexandre Bailleul ENS Lyon
    Zéros réels de fonctions L d'Artin et biais de Chebyshev dans les corps de nombres
    Le biais de Chebyshev est un phénomène qui a été étudié tout d'abord dans le cadre des "courses de nombres premiers" (Rubinstein et Sarnak, 1994) pour expliquer la prédominance apparente des nombres premiers congrus à 3 mod 4 par rapport à ceux qui sont congrus à 1 mod 4. Ces courses de nombres premiers ont été généralisées notamment dans le contexte des corps de nombres par Ng en 2000. Dans des travaux récents, Fiorilli et Jouve ont étudié le biais de Chebyshev dans des familles d'extensions de corps de nombres, et mis en évidence des comportements limites de type "grandes déviations" et "théorème central limite". Dans le travail présenté, je mets en évidence l'influence considérable qu'ont certains zéros réels de fonctions L d'Artin sur le biais de Chebyshev dans des extensions particulières de corps de nombres.
  • Le 8 décembre 2020 à 11:15
  • Séminaire de EDP - Physique Mathématique
    visio-conférence
    R. Winter ENS Lyon
    Debye screening in the Vlasov-Poisson equation
    When analyzing systems governed by Coulomb-interaction, we are faced with the problem of infinite reach: A localized perturbation has a significant influence over arbitrarily large distances. However, in many physically relevant cases the influence of a perturbation is immediately shielded by the response of the system, and the interaction becomes effectively of short range. This effect is known as Debye screening in plasma physics. The onset of Debye screening has been proved for the Gibbs distribution by Brydges and Federbush. For systems out of equilibrium, mathematically rigorous results are scarce. We prove (exponential) Debye screening for the perturbation induced by a point charge in the nonlinear Vlasov-Poisson system. Joint work with Adolfo Arroyo-Rabasa.
  • Le 8 décembre 2020 à 13:30
  • Direction
    visio-conférence
    -
    Mardi 8 Décembre à partir de 13h30 télé-café de Noël convivialProgramme:- 13h30: Andrea Fanelli, une introduction au groupe de Cremona, un objet très classique en géométrie algébrique.- 14h00: Elise Goujard, sur le théorème de la baguette magique d'Erzin Mirzakhani.- 14h30: Quartier libre et atelier commun autour du tableau numérique partagé http://xavier.toonywood.org/blackboard/?id=IMB

  • Le 11 décembre 2020 à 10:00
  • Séminaire de Géométrie
    Salle 2
    Laurent Manivel Toulouse
    Reporté

  • Le 11 décembre 2020 à 14:00
  • Séminaire de Théorie des Nombres
    En Visio
    Jiandi Zou Versailles
    Représentations supercuspidales de $GL(n,F)$ distinguées par un sous-groupe unitaire
    Soit $G = GL(n,F)$ avec $F$ un corps local non-archimédien de caractéristique résiduelle $p$ different de 2. On prouve que les représentations lisses supercuspidales de $G$ soient distinguées par une sous-groupe unitaire $H$, c'est-à-dire les représentations aient une forme linéaire non-triviale $H$-invariante, si et seulement si qu'elles soient invariantes par l'action galoisienne, et dans ce cas la dimension de l'espace de distinction soit 1. Ce résultat est connu et prouvé par Jacquet et Feigon-Lapid-Offen, si F est $p$-adique et les représentations sont complexes. Notre méthode, basée au théorie de type développé par Bushnell-Kutzko, est totalement différente, qui marche aussi pour les représentations $l$-modulaires avec $l$ different de $p$.
  • Le 15 décembre 2020 à 10:00
  • Soutenances
    Salle de Conférences
    Lara ABI RIZK
    Sujet : "Ondes progressives et propriétés de propagation pour un problème d'épidémiologie évolutive non-local". Directeur de thèse : Jean-Baptiste Burie. Co-directeur de thèse : Arnaud Ducrot

  • Le 15 décembre 2020 à 10:00
  • Séminaire de Théorie Algorithmique des Nombres
    Online
    Elie Eid Université de Rennes
    Équations différentielles $p$-adiques pour le calcul d'isogénies en.petite caractéristique
    On présente une méthode effective de calcul sur les $p$-adiques d’isogénies entre courbes elliptiques et Jacobiennes de courbes hyperelliptiques de petit genre. Une application importante est le cas des courbes définies sur un corps fini de petite caractéristique, qui peut être résolu par relèvement dans les $p$-adiques. Notre algorithme repose sur la résolution d’équations différentielles avec un bon contrôle de perte de précision. Son analyse est basée sur la théorie de la précision différentielle développée par Caruso, Roe et Vaccon.
  • Le 15 décembre 2020 à 14:00
  • Soutenances
    Salle 2
    Christophe DUMORA
    Sujet : "Estimation de paramètres clés liés à la gestion d'un réseau de distribution d'eau potable : Méthode d'inférence sur les noeuds d'un graphe". Directeur de thèse : Jérémie Bigot. Co-directeur : David Auber.

  • Le 15 décembre 2020 à 14:00
  • Soutenances
    visio-conférence
    Gregorio DALLE VEDOVE NOSAKI
    Sujet : "Machine de Turing et chaos pour des modèles bidimensionnels à température zéro". Directeur de thèse : Philippe Thieullen. Co-directeur : Rodrigo Bissacot Proenca.

  • Le 16 décembre 2020 à 14:30
  • Soutenances
    ONERA - The French Aerospace Lab, Meudon, Visioconférence
    Luis BENETTI RAMOS
    Sujet : "Auto-propulsion et interaction hydrodynamique d'ailes battantes dans des écoulements visqueux". Directeurs de thèse : Michel Bergmann et Angelo Iollo.

  • Le 17 décembre 2020 à 09:00
  • Soutenances
    Salle de Conférences
    Baptiste HUGUET
    Sujet : "Calcul Stochastique dans les variétés et application aux inégalités fonctionnelles". Directeur de thèse : Marc Arnaudon. Co-directeur : Michel Bonnefont.

  • Le 17 décembre 2020 à 09:00
  • Séminaire Images Optimisation et Probabilités
    Salle de Conférences
    Baptiste Huguet IMB
    Soutenance de thèse

  • Le 17 décembre 2020 à 13:00
  • Soutenances
    Rapenburg 73, 2311 GJ Leiden
    Pavel SOLOMATIN
    Sujet : "Corps globaux et leurs fonctions L". Directeurs de thèse : Karim Belabas, Bart De Smit.

  • Le 17 décembre 2020 à 14:00
  • Séminaire de Calcul Scientifique et Modélisation
    Salle 2
    Victor Péron
    [Séminaire CSM] Développement de modèles asymptotiques d'ordre élevé pour la résolution numérique de problèmes de perturbation en électromagnétisme et en sismologie
    Les développements asymptotiques multi-échelles permettent de résoudre des problèmes de perturbation à l'aide de la méthode des éléments finis sans rencontrer le problème de l'adaptation de maillage relativement à un petit paramètre caractéristique du problème à résoudre. C'est le cas notamment pour certains problèmes de transmission en présence de couches minces ou de couches limites. Dans cet exposé, nous présentons des modèles asymptotiques d'ordre élevé pour des problèmes d'ondes acoustiques et élastiques en régime harmonique en temps ainsi que pour les équations de Maxwell harmoniques. La précision et la stabilité de modèles obtenus sont illustrées par des résultats numériques.
  • Le 17 décembre 2020 à 15:00
  • Soutenances
    Salle de Conférences
    Guillaume RAVEL
    Sujet :"Three-dimensional modeling and experiment-driven numerical simulation of zebrafish escape swimming for biological applications". Directeurs de thèse : Afaf Bouharguane, Patrick J. Babin.

  • Le 18 décembre 2020 à 10:00
  • Soutenances
    Salle de Conférences
    Sébastien RIFFAUD
    Sujet : "Modèles réduits : convergence entre calcul et données pour la mécanique des fluides". Directeur de thèse : Angelo Iollo