N’afficher que les événements de cette semaine
Despite the supreme importance of fluid flow models, the well-posedness of three-dimensional viscous and inviscid flow equations remains unsolved. Promising efforts have recently evolved around the concept of statistical solutions. In this talk, we present stochastic lattice Boltzmann methods for efficiently approximating statistical solutions to the incompressible Navier–Stokes equations in three spatial dimensions. Space-time adaptive kinetic relaxation frequencies are used to find stable and consistent numerical solutions along the inviscid limit toward the Euler equations. With single level Monte Carlo and stochastic Galerkin methods, we approximate responses, e.g., from initial random perturbations of the flow field. The novel combinations of schemes are implemented in the parallel C++ data structure OpenLB and executed on heterogeneous high-performance computing machinery. Based on exploratory computations, we search for scaling of the energy spectra and structure functions in terms of Kolmogorov’s K41 theory. For the first time, we numerically approximate the limit of statistical solutions of the incompressible Navier–Stokes solutions toward weak-strong unique statistical solutions of the incompressible Euler equations in three dimensions. Applications to wall-bounded turbulence and the potential to provide training data for generative artificial intelligence algorithms are discussed.
Isogeny-based cryptography is founded on the assumption that the Isogeny problem—finding an isogeny between two given elliptic curves—is a hard problem, even for quantum computers.
In the security analysis of isogeny-based schemes, various related problems naturally arise, such as computing the endomorphism ring of an elliptic curve or determining a maximal quaternion order isomorphic to it.
These problems have been shown to be equivalent to the Isogeny problem, first under some heuristics and subsequently under the Generalized Riemann Hypothesis.
In this talk, we present ongoing joint work with Benjamin Wesolowski, where we unconditionally prove these equivalences, notably using the new tools provided by isogenies in higher dimensions.
Additionally, we show that these problems are also equivalent to finding the lattice of all isogenies between two elliptic curves.
Finally, we demonstrate that if there exist hard instances of the Isogeny problem then all the previously mentioned problems are hard on average.
L'ordre du jour sera le suivant :
1) Adoption du Compte-Rendu du conseil du 10 septembre (vote)
2) Informations générales
3) Élection d'un nouveau membre du conseil scientifique (vote)
4) Présentation du projet de nouveau site web de l'IMB. Discussions sur la présentation et les couleurs à adopter.
5) Discussion autour des comités de sélection sur la base des propositions apparaissant dans la lettre ouverte
6) Questions diverses
Pensez à donner votre procuration
Le projet européen SimCardioTest essaye de montrer qu'il est possible et utile de réaliser des essais cliniques in-silico pour des médicaments ou des dispositifs médicaux cardiaques. Pour cela, une plateforme internet à été créée, à travers laquelle il est possible d'exécuter des simulations numériques de modèles représentant trois usages possibles en cardiologie. Garantir la crédibilité des simulations est alors un point clé pour un usage industriel de cette plateforme. Cela repose sur des procédures standardisées de vérification et de validation pour chaque usage. À l'université de Bordeaux, au sein de l'IHU LIRYC, nous avons construit, vérifié et travaillons à la validation d'un modèle qui permet d'étudier l'efficacité énergétique d'un stimulateur cardiaque. J'expliquerais ce travail et des difficultés auxquelles nous avons été confrontées.
Cette recherche est menée pour examiner une approche d'optimisation distributionnellement robuste appliquée au problème de dimensionnement de lots avec des retards de production et une incertitude de rendement sous des ensembles d'ambiguïté par événement. Les ensembles d'ambiguïté basés sur les moments, Wasserstein et le clustering K-Means sont utilisés pour représenter la distribution des rendements. Des stratégies de décision statiques et statiques-dynamiques sont également considérées pour le calcul d'une solution. Dans cette présentation, la performance de différents ensembles d'ambiguïté sera présentée afin de déterminer un plan de production qui soit satisfaisant et robuste face aux changements de l'environnement. Il sera montré, à travers une expérience numérique, que le modèle reste traitable pour tous les ensembles d'ambiguïté considérés et que les plans de production obtenus demeurent efficaces pour différentes stratégies et contextes décisionnels.
Deep learning has revolutionised image processing and is often considered to outperform classical approaches based on accurate modelling of the image formation process. In this presentation, we will discuss the interplay between model-based and learning-based paradigms, and show that hybrid approaches show great promises for scientific imaging, where interpretation and robustness to real-world degradation is important. We will present two applications on super-resolution and high-dynamic range imaging, and exoplanet detection from direct imaging at high contrast.
N'oubliez pas de vous inscrire à la liste maths-ia !
https://listes.math.u-bordeaux.fr/wws/subscribe/mathsia?previous_action=info
A Coulter counter is an impedance measurement system widely used in blood analyzers to count and size red blood cells, thus providing information about the most numerous cells of the body. In Coulter counters, cells flow through a detection zone where an electric field is imposed, which is disturbed when a cell passes through. The number of these impedance signals yield the red blood cell count, while the cell volume is supposed to be proportional to the amplitude of the signals. However, in real systems, the red blood cells trajectories in the system does not allow to verify the assumptions necessary to provide an accurate volume measurement. For a few years, IMAG has been developing the YALES2BIO solver for the prediction of red blood cell dynamics under flow. In this presentation, I will describe the fluid-structure problem and the numerical method used, then share how numerical simulation has been used to understand the signals in industrial Coulter counters and to improve the measurements of red blood cell volumes rendered by such systems. In addition, I will discuss how the mechanical properties of RBCs impact the measurements. This work has been performed during the PhD theses of Pierre Taraconat and Pierre Pottier (Horiba Medical & IMAG).
Soit $K$ un corps algébriquement clos de caractéristique quelconque. Soit $f \in K[[x,y]]$ une série réduite et $r(f)$ le nombre de ses facteurs irréductibles. Soit $\mathcal{O}=K[[x,y]]/(f)$ et $\overline{\mathcal{O}}$ sa cloture intégrale. On note $\delta(f)=\dim_K \overline{\mathcal{O}}/\mathcal{O}$ et $\mu(f)=\dim_K K[[x,y]]/(f'_x,f'_y)$, le nombre de Milnor. Milnor a montré en 1968 que si $K=\mathbb{C}$,
$$\mu(f)=2\delta(f)-r(f)+1.$$
En 1973, Deligne a montré que si la caractérisque de $K$ est arbitraire
$$\mu(f)\geq 2\delta(f)-r(f)+1.$$
Le but de cet exposé est d'énoncer une conjecture sur la caractéristique de $K$ pour avoir l'égalité.
La conjecture standard de type Hodge porte sur les nombres d'intersections de sous-variétés d'une variété projective. Elle a de nombreuses conséquences en arithmétique, dans cet exposé on construira des variétés abéliennes A qui satisfont à cette conjecture. L'outil principal permettant la construction de variétés abéliennes A est la théorie de Honda-Tate, qui relie ces dernières à des objets de théorie algébrique des nombres. On sera ensuite amené à étudier l'algèbre des classes de Tate de A, qui est un invariant plus manipulable que l'ensemble des sous-variétés de A.
We will focus on the formation of extreme waves in the open sea, adopting a probabilistic point of view. We will first identify the first term of the asymptotic development of the probability of occurrence of such a wave when the wave height tends to infinity. If an extreme wave occurs, what is the most likely mechanism that produced it? We will answer this question using two toy models. In the case of an integrable system, we will show that a linear superposition mechanism is the most likely. In the case of a strongly resonant system, the main formation mechanism is a nonlinear focusing effect, which induces an increase in the probability of occurrence of large waves.
Dans cette conférence, nous explorerons les évolutions récentes du secteur spatial dans le cadre du mouvement NewSpace, qui révolutionne l'accès à l'espace par une approche plus agile et commerciale. Nous aborderons également le rôle croissant du spatial dans la surveillance et la lutte contre les changements climatiques, avec un accent particulier sur les technologies permettant de recueillir des données environnementales cruciales. Enfin, nous illustrerons ces avancées à travers le cas de LEOBLUE, une société innovante qui développe des solutions de communication directe entre satellites en orbite basse et smartphones, permettant de nouvelles applications à large échelle.
In statistical learning, many analyses and methods rely on optimization, including its stochastic versions introduced for example, to overcome an intractability of the objective function or to reduce the computational cost of the deterministic optimization step.
In 1951, H. Robbins and S. Monro introduced a novel iterative algorithm, named "Stochastic Approximation", for the computation of the zeros of a function defined by an expectation with no closed-form expression. This algorithm produces a sequence of iterates, by replacing at each iteration the unknown expectation with a Monte Carlo approximation based on one sample. Then, this method was generalized: it is a stochastic algorithm designed to find the zeros of a vector field when only stochastic oracles of this vector field are available.
Stochastic Gradient Descent algorithms are the most popular examples of Stochastic Approximation : oracles come from a Monte Carlo approximation of a large sum. Possibly less popular are examples named "beyond the gradient case" for at least two reasons. First, they rely on oracles that are biased approximation of the vector field, as it occurs when biased Monte Carlo sampling is used for the definition of the oracles. Second, the vector field is not necessarily a gradient vector field. Many examples in Statistics and more
generally in statistical learning are "beyond the gradient case": among examples, let us cite compressed stochastic gradient descent, stochastic Majorize-Minimization methods such as the Expectation-Maximization algorithm, or the Temporal Difference algorithm in reinforcement learning.
In this talk, we will show that these "beyond the gradient case" Stochastic Approximation algorithms still converge, even when the oracles are biased, as soon as some parameters of the algorithm are tuned enough. We will discuss what 'tuned enough' means when the quality criterion relies on epsilon-approximate stationarity. We will also comment the efficiency of the
algorithm through sample complexity. Such analyses are based on non-asymptotic convergence bounds in expectation: we will present a unified method to obtain such bounds for a large class of Stochastic Approximation methods including both the gradient case and the beyond the gradient case. Finally, a Variance Reduction technique will be described and its efficiency illustrated.
...
On s'intéresse au problème d'optimiser une fonction objectif g(W x) + c^T x pour x entier, où chaque coordonnée de x est contrainte dans un intervalle. On suppose que la matrice W est à coefficient entiers de valeur absolue bornée par Delta, et qu'elle projette x sur un espace de petite dimension m << n. Ce problème est une généralisation du résultat de Hunkenschröder et al. dans lequel g est séparable convexe, et x est dans un 0-1 hypercube.
On présentera un algorithme en complexité n^m (m Delta)^O(m^2), sous la supposition que l'on sache résoudre efficacement le problème lorsque n = m. Cet algorithme utilise les travaux d'Eisenbrand et Weismantel sur la programmation linéaire entière avec peu de contraintes.
L'algorithme présenté peut être employé théoriquement dans plusieurs problèmes notamment la programmation mixte linéaire avec peu de contraintes, ou encore le problème du sac à dos où l'on doit acheter son sac.
Stochastic optimization naturally appear in many application areas, including machine learning. Our goal is to go further in the analysis of the Stochastic Average Gradient Accelerated (SAGA) algorithm. To achieve this, we introduce a new $\lambda$-SAGA algorithm which interpolates between the Stochastic Gradient Descent ($\lambda=0$) and the SAGA algorithm ($\lambda=1$). Firstly, we investigate the almost sure convergence of this new algorithm with decreasing step which allows us to avoid the restrictive strong convexity and Lipschitz gradient hypotheses associated to the objective function. Secondly, we establish a central limit theorem for the $\lambda$-SAGA algorithm. Finally, we provide the non-asymptotic $L^p$ rates of convergence.
...
Separable states are multipartite quantum states that can be written as a convex combination of product states. Product states are multipartite quantum states that can be written as a tensor product of states in each space. Quantum state separable problem is an NP-hard problem but fundamental for quantum information theory. We propose two relaxation techniques for this problem. In the view of commutative optimization, we treat the states as matrices of multilinear complex polynomials. Our relaxation technique is found similar to that for complex bilinear polynomials arising in the Alternating Current Optimal Power Flow problem. In the view of non-commutative optimization, we treat the states as tensor products of bounded Positive Semi-definite variables. We propose a generalized McCormick relaxations using linear matrix inequalities. These two relaxations will be the key component to drive an exact branch-and-cut algorithm.
À préciser
...
A définir
La systole d'une surface hyperbolique est la longueur de la géodésique fermée la plus courte sur la surface. Déterminer la systole maximale possible d'une surface hyperbolique d'une topologie donnée est une question classique en géométrie hyperbolique. Je vais parler d'un travail commun avec Mingkun Liu sur la question de ce que les constructions aléatoires peuvent apporter à ce problème d'optimisation.
...
À préciser
On dit qu'une classe de groupes de type fini satisfait une alternative de Tits si chacun de ces groupes est soit "petit" (le sens peut dépendre du contexte), soit contient un groupe libre. L'alternative de Tits originelle concerne les groupes linéaires (et dans ce cas petit signifie virtuellement résoluble). Depuis, elle a été démontrée dans de nombreux contextes géométriques, souvent en courbure négative : groupes agissant sur des espaces hyperboliques, sous-groupes de groupes modulaires de surfaces ou de Out(F_N), groupes agissant sur des complexes simpliciaux avec des bonnes propriétés de courbure, etc.
Je présenterai une nouvelle preuve de l'alternative de Tits pour les groupes agissant sur des immeubles de type Ã_2 (objets que j'introduirai). La nouveauté de notre approche est qu'elle se base sur des marches aléatoires. On démontre également au passage un théorème "local-global" : un groupe dont tous les éléments fixent un point a un point fixe global. C'est un travail en commun avec Corentin Le Bars et Jeroen Schillewaert.
Dans cet exposé nous étudierons la taille du groupe de Tate-Shafarevich de certaines surfaces abéliennes sur le corps de fonctions $\mathbb{F}_q(t)$. Hindry et Pacheco ont montré que, pour les variétés abéliennes sur des corps de fonctions, la taille du Sha (dès que finie) est majorée par la hauteur exponentielle. Nous montrerons qu'en dimension 2 leur borne est optimale. Pour cela, on construira une suite de Jacobiennes vérifiant la conjecture de BSD, puis nous calculerons explicitement leur fonction L à l'aide de sommes de caractères. Grâce à des méthodes analytiques, nous estimerons la taille de la valeur spéciale, pour retrouver finalement la borne souhaitée sur le cardinal de leur groupe de Sha.
A définir
À préciser
À préciser
During this talk I will present a work in progress, joint with Félix Baril-Boudreau and Alexandre Benoist on the conjecture by Lang and Trotter that generalizes to elliptic curves Artin's conjecture on primitive roots.
A préciser
A définir
TBA
A définir
A définir
TBA
A définir