> >
Séminaire Géométrie
Les thématiques sont articulées autour de la géométrie différentielle, de la géométrie analytique et algébrique et des système dynamiques (responsables : Jean-Philippe Furter et Yohan Brunebarbe)
Le 11 janvier 2019
à 10:45
Séminaire de Géométrie
Salle 2
Tobias Kaiser Passau
Integration in non-archimedean subanalytic geometry
In real analytic geometry semianalytic and subanalytic sets are studied. Globally subanalytic sets and functions exhibit particular tame geometric behaviour. We establish a Lebesgue measure and integration theory in non-archimedean globally subanalytic geometry. To be more precise, we work in a model of the theory of the real field with restricted analytic functions such that its value group has finite archimedean rank. An example is given by the field of Puiseux series over the reals. We show how one can extend the restricted logarithm to a global logarithm with values in the polynomial ring over the model with dimension the archimedean rank. The logarithms are determined by algebraic data from the model, namely by a section of the model and by an embedding of the value group into its Hahn group. We illustrate how one can embed such a logarithm into a model of the real field with restricted analytic functions and exponentiation. This allows us, using model theoretic arguments, to establish a full Lebesgue measure and integration theory with values in the polynomial ring.
Le 18 janvier 2019
à 10:45
Séminaire de Géométrie
Salle 2
Tuomas Sahlsten Manchester
From Kunze-Stein phenomenon to delocalisation of eigenfunctions
We establish quantitative Quantum Ergodicity type delocalisation theorem for eigenfunctions of the Laplacian on hyperbolic surfaces of large genus. In the compact setting our assumptions hold for random surfaces in the sense of Weil-Petersson volume in the Teichmüller space due to the work of Mirzakhani and in non-compact setting for Maass forms on arithmetic surfaces coming from congruence covers of the modular surface. The methods are based on analysis of Benjamini-Schramm scaling limits of metric measure spaces and the Kunze-Stein phenomenon in representation theory, and are inspired by similar results on graphs by Anantharaman et al. We plan to give a gentle introduction to the field before going to our results. Joint work with Etienne Le Masson (Cergy-Pontoise University, France).
Le 25 janvier 2019
à 10:45
Séminaire de Géométrie
Salle 2
Charles Frances Strasbourg
Dynamique lorentzienne et topologie en dimension 3
C'est un théorème classique de Myers et Steenrod que le groupe des isométries d'une variété riemannienne compacte est un groupe de Lie compact. Ce résultat de compacité est mis en défaut pour les métriques pseudo-riemanniennes. Toutefois, l'existence d'un groupe non compact d'isométries impose généralement un certain nombre de contraintes, notamment sur la topologie de la variété. Nous nous intéresserons dans l'exposé au cas des métriques lorentziennes sur les variétés de dimension 3. Nous décrirons en particulier quelles sont les variétés compactes de dimension 3 compatibles avec un groupe d'isométries lorentziennes non compact.
Le 1er février 2019
à 10:45
Séminaire de Géométrie
Salle 2
Jean-François Quint IMB
Perturbations de la série complémentaire
Dans cet exposé, j'expliquerai comment obtenir de nouvelles représentations unitaires des groupes libres qui approchent la représentation triviale.
Le 8 février 2019
à 10:45
Séminaire de Géométrie
Salle 2
Michele Triestino Dijon
Groupes d'homéomorphismes affines par morceaux d'un flot
L'étude des actions de groupes sur la droite est parfois plus ardu par rapport aux actions sur le cercle, le problème principal venant de la non-compacité de l'espace. Pour contourner cela, on "compactifie" l'action sur la droite en la voyant comme l'action sur une orbite infinie d'un flot minimal. Plus précisément, étant donné un homéomorphisme minimal de Cantor, on considère le groupe des homéomorphismes de sa suspension qui préservent les orbites du flot induit. Si l'on se restreint aux homéomorphismes qui le long des orbites sont donnés par des homéomorphismes affines par morceaux dyadiques, on obtient un groupe qui ressemble à Thompson T ; ce groupe est simple, et lorsque l'homéomorphisme de Cantor est un sous-décalage, il est aussi de type fini. On obtient ainsi des groupes simples de type fini agissant sur la droite, en généralisant les premiers exemples obtenus récemment par Hyde et Lodha. Il s'agit d'un travail en commun avec Nicolás Matte Bon.
Le 22 février 2019
à 10:45
Séminaire de Géométrie
Salle 2
Jean-François Bony IMB
Introduction au vocabulaire de l'analyse semiclassique
Le 8 mars 2019
à 10:45
Séminaire de Géométrie
Salle 2
Alain Yger IMB
Autour du concept de cycle généralisé
J'introduirai le concept de cycle généralisé en géométrie analytique complexe, expliquerai pourquoi ce concept s'avère nécessaire pour concilier aspects locaux et globaux en théorie de l' intersection impropre , et indiquerai des résultats dans cette direction. Le travail dont je parlerai est un travail en commun (depuis plusieurs années) avec Mats Andersson, Denis Eriksson, H å kan Samuelsson Kalm et Elizabeth Wulcan (Göteborg), dont le second volet est disponible aujourd'hui sur arXiv:1812.03054v1 . J'envisagerai également des pistes pour étendre pareil concept au cadre arithmétique, lorsque les cycles en jeu dans le cadre complexe proviennent cette fois de cycles algébriques sur une variété algébrique propre (un produit d'espaces projectifs, plus généralement une variété torique propre) définie sur le corps des rationnels.
Le 15 mars 2019
à 10:45
Séminaire de Géométrie
Salle 2
Hélène Eynard-Bontemps IMJ
Propriétés arithmétiques du centralisateur d'une dilatation lisse de la demi-droite $[0,+\infty[$
Les actions lisses du groupe abélien $\mathbb{Z}^2$ sur la demi-droite $[0,+\infty[$ apparaissent comme représentations d'holonomie de feuilletages en surfaces de variétés de dimension 3 dans un voisinage unilatéral d'une feuille torique. Pour étudier ces actions et leurs déformations possibles, on peut s'intéresser au centralisateur d'un difféomorphisme de la demi-droite donné, en commençant par le cas particulier des dilatations et contractions, i.e. des difféomorphismes fixant uniquement $0$. La régularité est déterminante dans cette étude. Nous verrons notamment dans un premier temps qu'alors que le centralisateur ($C^1$) d'une dilatation $C^1$ peut contenir un groupe libre à deux générateurs, celui (lisse) d'une dilatation lisse $f$ s'identifie canoniquement à un sous-groupe de $\mathbb{R}$ : l'ensemble des temps lisses du flot d'un champ de vecteurs $C^1$ de la demi-droite, dont $f$ est le temps $1$ (résultat dû à Szekeres et Kopell, dans les années 50-60). Nous verrons ensuite que cet ensemble peut, sans être $\mathbb{R}$ tout entier, contenir, en plus des entiers (correspondant aux itérés de $f$), des nombres irrationnels, mais pas n'importe lesquels. Il nous faudra pour cela séparer les irrationnels en deux catégories : les nombres diophantiens, et les autres, les nombres de Liouville.
Le 22 mars 2019
à 10:45
Séminaire de Géométrie
Salle 2
Alix Deruelle IMJ
Sur la régularité du flot de Ricci ayant pour condition initiale un espace métrique
Nous nous intéressons à l'effet régularisant du flot de Ricci lorsqu'il a pour condition initiale un espace métrique dont la métrique est induite par une métrique lisse riemannienne. Nous supposons que la convergence au temps initial a lieu au sens de la topologie Gromov-Haudorff. La question principale est: sous quelles conditions sur la courbure ces flots de Ricci atteignent leurs conditions initiales de manière lisse ? Travail en cours en collaboration avec Felix Schulze and Miles Simon.
Le 29 mars 2019
à 10:45
Séminaire de Géométrie
Salle 2
Lilia Mehidi IMB
Points conjugués sur les tores Lorentziens.
Un théorème de E. Hopf affirme que toute métrique Riemannienne sur le tore T2 sans points conjugués est nécessairement plate. En Lorentzien, la situation s'avère moins rigide. L'existence d'un tore Lorentzien non plat et sans points conjugués a été mise en évidence : le tore de Clifton-Pohl. Il existe déjà des constructions géométriques permettant d'obtenir d'autres tores sans points conjugués à partir du tore de Clifton-Pohl, mais ces tores sont tous modelés, à équivalence projective près, sur le même objet universel ; on dira qu'ils ont (projectivement) la même "géométrie locale". Dans cet exposé, on montrera qu'il existe, du point de vue de la géométrie locale, une infinité de métriques lorentziennes sans points conjugués sur le tore de dimension 2, dont certaines (comme la métrique de Clifton-Pohl) admettent un large espace de déformation.
Le 5 avril 2019
à 10:45
Séminaire de Géométrie
Salle 2
Lorenzo Fantini Marseille
Une approche valuative de la géométrie Lipschitz des singularités de surfaces complexes
La géométrie Lipschitz est une branche de la théorie des singularités qui étudie les données métriques d'un germe d'espace analytique complexe et l'invariance de celles-ci à homéomorphisme bi-Lipschitz près. Après en avoir introduit les bases, je vais parler d'une nouvelle approche de l'étude de ces invariants, et en particulier des taux de croissance Lipschitz internes, basée sur la géométrie d'un espace de valuations (l'entrelacs non archimédien ? à la Berkovich ? de la singularité). Dans le cas des singularités de surfaces, je vais décrire précisément ces taux de croissance à l'aide de la combinatoire, en montrant qu'ils déterminent et sont déterminés par la topologie du germe, ses sections hyperplanes et ses courbes polaires génériques. Je vais également mettre en relation les taux de croissance Lipschitz et des invariants classiques en géométrie birationnelle tels que la log discrépance et la discrépance de Mather, et expliquer comment nos méthodes donnent des restrictions sur l'invariant Lipschitz complet pour la métrique interne. Ceci est un travail en commun avec André Belotto et Anne Pichon.
Le 12 avril 2019
à 10:45
Séminaire de Géométrie
Salle 2
Bruno Duchesne Université de Lorraine
Représentations maximales de réseaux hyperboliques complexes en dimension infinie
Contrairement aux réseaux en rang supérieur, les réseaux des groupes de Lie simples de rang 1 ne sont pas rigides. Ce qui donne lieu à l'espace de Teichmüller par exemple. Pour les représentations des réseaux des groupes d'isométries des espaces hyperboliques complexes dans des groupes de Lie hermitiens, la forme de Kähler fournit un invariant numérique, appelé invariant de Toledo et lorsque cet invariant est maximal, ces représentations se révèlent être rigides dès lors que la dimension est supérieure à 2. Nous nous intéresserons aux représentations de dimension infinie de ces réseaux hyperboliques complexes qui ne sont pas unitaires mais préservent une forme hermitienne d'indice fini. Cela donne des actions par isométries sur des espaces symétriques hermitiens de dimension infinie et l'on peut aussi définir un invariant de Toledo. Nous verrons que pour des groupes de surface, on peut créer des représentations maximales qui ne préservent aucun sous-espace de dimension finie et a contrario, pour des réseaux hyperboliques complexes en dimension au moins 2, ces représentations transitent nécessairement par un groupe de dimension finie.
Le 19 avril 2019
à 11:00
Séminaire de Géométrie
Salle 2
Adrien Sauvaget Utrecht
Intersection theory and Masur-Veech Volumes
We show that the Masur-Veech volumes of moduli space of flat surfaces with conical singularities can be expressed as intersection numbers in the Hodge bundle. This result is parallel to the expression of Weil-Peterson volumes in moduli spaces of curves by Mirzakhani. However, the relations between these two families of invariants are still ill-understood both the combinatorial and geometric points of view. (joint with D. Chen, M. Moeller, D. Zagier).
Le 3 mai 2019
à 10:45
Séminaire de Géométrie
Salle 2
Henri Guenancia CNRS\, Toulouse
Sous-variétés singulières de variétés kähleriennes compactes à courbure sectionnelle holomorphe négative
J'expliquerai le résultat suivant : soit $(X,\omega)$ une variété kählerienne compacte dont la courbure sectionnelle holomorphe est strictement négative. Alors toute sous-variété irréductible de X est de type général. Si le temps le permet, je présenterai également un analogue quasi-projectif de ce résultat.
Le 10 mai 2019
à 10:45
Séminaire de Géométrie
Salle 2
Sébastien Labbé LaBRI
Pavages apériodiques et codage de Z^2-actions sur le tore..
En 2015, Jeandel et Rao ont démontré par des calculs exhaustifs faits par ordinateur que tout ensemble de tuiles de Wang de cardinalité <= 10 soit admettent un pavage périodique du plan Z^2 soit n'admettent aucun pavage du plan. De plus, ils ont trouvé un ensemble de 11 tuiles de Wang qui est *apériodique*, c'est-à-dire qui pavent le plan mais jamais de façon périodique. Il n'y a donc pas de plus petit ensemble de tuiles de Wang apériodique que celui de Jeandel-Rao. Nous démontrons que le système dynamique symbolique correspondant à une partition du tore bien choisie muni d'une Z^2-action est un sous-shift minimal et uniquement ergodique des pavages de Jeandel-Rao. Cela fournit une construction de pavages de Jeandel-Rao par coupe et projection R^4 -> R^2. Nous illustrerons les résultats de façon interactive avec des tuiles de bois découpées au laser au FabLab Coh@bit de l'Université de Bordeaux. Le résultat généralise en 2d des comportements classiques en une dimension: le système dynamique symbolique engendré par un mot sturmien est conjugué en mesure à une rotation irrationnelle sur le cercle (Morse, Hedlund, 1940). Il généralise aussi un résultat de Rauzy (1980): le système dynamique symbolique engendré par le mot de Tribonacci est conjugué à une translation irrationnelle sur le tore, aussi appelé fractale de Rauzy.
Le 17 mai 2019
à 10:45
Séminaire de Géométrie
Salle 2
Aurélien Alvarez Orléans
Feuilletages algébriques complexes : entre théorie et expérimentations
Les solutions d'une équation différentielle algébrique à coefficients complexes définissent un feuilletage algébrique. Mieux comprendre l'espace des modules de ces feuilletages en fonction des propriétés dynamiques et topologiques des feuilles reste un problème largement ouvert. Nous présenterons des travaux en cours en collaboration avec Bertrand Deroin concernant les feuilletages des surfaces.
Le 14 juin 2019
à 11:30
Séminaire de Géométrie
Salle 2
-
Rencontre Surfaces plates
https://indico.math.cnrs.fr/event/4573/
Le 21 juin 2019
à 10:45
Séminaire de Géométrie
Salle 2
Jian Wang Grenoble
Contractible 3-manifold and Positive scalar curvature
It is not known whether a contractible 3-manifold admits a complete metric of positive scalar curvature. For example, the Whitehead manifold is a contractible 3-manifold but not homeomorphic to $R^{3}$. In this talk, I will present my proof that it does not have a complete metric with positive scalar curvature. I will further explain that a contractible genus one 3-manifold, a notion introduced by McMillan, does not admit a complete metric of positive scalar curvature.
Le 28 juin 2019
à 10:45
Séminaire de Géométrie
Salle 2
Polyxeni Spilioti University of Tübingen
Dynamical zeta functions, Fried's conjecture and refined analytic torsion
The dynamical zeta functions of Ruelle and Selberg are functions of a complex variable $s$ and are associated with the geodesic flow on the unit sphere bundle of a compact hyperbolic manifold. Their representation by Euler-type products traces back to the Riemann zeta function. In this talk, we will present trace formulae and the machinery that they provide to study the analytic properties of the dynamical zeta functions and their relation to the analytic torsion, a spectral invariant. One can refer to this relation as the so called Fired 's conjecture. In the case of a non-unitary twist, i.e., a non-unitary representation of the fundamental group of the manifold, one has to consider a refinement of the analytic torsion as it is introduced by Braverman and Kappeler.In addition, time depending, we will present other trace formulae such as the Lefschetz formula, and their application to prime geodesic theorems for locally symmetric spaces of higher rank.
Le 27 septembre 2019
à 10:00
Séminaire de Géométrie
Salle 2
Emily Dryden Bucknell University
Relationships among geometry, topology, and Steklov eigenvalues of orbifolds
The Steklov problem models the vibrations of a free membrane that has all its mass concentrated along the boundary. The eigenvalues encode certain information about the geometry and topology of the membrane, but not everything! We?ll explore this idea in the two-dimensional setting, allowing the boundaries of our surfaces to have mild singularities. Some simple computations will lead to surprising results. We will also discuss bounds on the eigenvalues in terms of geometric and topological data. We will see how the orbifold setting leads naturally to considering the "sloshing" problem that describes, for instance, the free oscillations of wine in a glass. This is based on joint work with Teresa Arias-Marco, Carolyn S. Gordon, Asma Hassannezhad, Allie Ray, and Elizabeth Stanhope.
Le 4 octobre 2019
à 10:00
Séminaire de Géométrie
Salle 2
Martin Leguil Orsay
Détermination spectrale des billards dispersifs ouverts (projet en collaboration avec Péter Bálint, Jacopo De Simoi & Vadim Kaloshin)
Dans un projet en collaboration avec P. Bálint, J. De Simoi et V. Kaloshin, nous avons étudié le problème spectral inverse pour une classe de billards dispersifs obtenus en ôtant du plan un nombre fini d'obstacles lisses strictement convexes satisfaisant une condition de non-éclipse. La restriction de la dynamique à l'ensemble des orbites qui ne s'échappent pas à l'infini est conjuguée à un sous-décalage de type fini, ce qui permet d'étiqueter de manière naturelle les orbites périodiques. Nous montrons que le Spectre Marqué des Longueurs détermine les courbures des différents obstacles aux points associés à des orbites de période deux, ainsi que l'ensemble des exposants de Lyapounoff des orbites périodiques. De plus, nous montrons que de manière générique, dans le cas de billards dont le bord est analytique et qui satisfont deux hypothèses de symétrie, il est possible de reconstituer complètement la géométrie à l'aide des données purement dynamiques encodées dans le Spectre Marqué des Longueurs.
Le 11 octobre 2019
à 10:00
Séminaire de Géométrie
Salle 2
Stéphane Lamy Toulouse
Automorphismes polynomiaux modérés
Le sous-groupe des automorphismes polynomiaux modérés de l'espace affine de dimension n est le groupe engendré par le groupe linéaire et certaines transvections polynomiales. En dimension n = 3, je décrirai des actions de ce groupe sur des espaces métriques à courbure négative, qui permettent par exemple d'exhiber des sous-groupes distingués, ou encore d'obtenir un résultat de linéarisabilité des sous-groupes finis. (Travaux en commun avec P. Przytycki).
Le 25 octobre 2019
à 10:00
Séminaire de Géométrie
Salle 2
Duc Manh Nguyen et Yohan Brunebarbe
Comptage des pavages sur des surfaces et variation de structures de Hodge
Le 8 novembre 2019
à 10:00
Séminaire de Géométrie
Salle 2
Adrien Boyer IMJ
Certaines fonctions sphériques sur les groupes hyperboliques
L'inégalité de Haagerup également appelée propriété RD, vue du bord d'un groupe hyperbolique, est intimement liée à la fonction de Harish-Chandra. En prenant appui sur cette observation, nous donnerons des inégalités spectrales, reliées à certaines fonctions sphériques, définies sur le bord du groupe. Les résultats obtenus peuvent être vus comme des généralisations, ou des déformations par un paramètre réel, de la propriété RD pour les groupes hyperboliques (résultat dû à de la Harpe et Jolissaint). Si le temps le permet nous discuterons aussi de séries complémentaires pour les groupes hyperboliques.
Le 15 novembre 2019
à 10:00
Séminaire de Géométrie
Salle 2
Andre Belotto Aix-Marseille
Monomialization of a quasianalytic morphism
I will present a monomialization theorem for mappings in general classes of infinitely differentiable functions that are called quasianalytic (work in collaboration with Edward Bierstone). Examples include Denjoy-Carleman classes (of interest in real analysis), the class of infinitely differentiable functions which are definable in a given polynomially bounded o-minimal structure (in model theory), as well as the classes of real- or complex-analytic functions, and algebraic functions over any field of characteristic zero. The monomialization theorem asserts that mapping in a quasianalytic class can be transformed to mapping whose components are monomials with respect to suitable local coordinates, by sequences of simple modifications of the source and target (local blowings-up and power substitutions in the real cases, in general, and local blowings-up alone in the algebraic or analytic cases). It is not possible, in general, to monomialize by global blowings-up, even in the real analytic case. The problem of monomialization has been considered a problem in algebraic geometry, and has an extensive literature. The result has previously been proved in the algebraic and analytic cases by D. Cutkosky, using valuation theory. Our point of view is rather that of analysis, and we develop a calculus of derivations tangent to the fibres of a morphism, which is valid for any class satisfying the quasianalytic axioms. Applications of monomialization include results on the rectilinearization of sub-quasianalytic sets, that were obtained by J.-P. Rolin and T. Servi using model-theoretic techniques.
Le 22 novembre 2019
à 10:00
Séminaire de Géométrie
Salle 2
Guillaume Buro EPFL
Géométrie Finslérienne de basse régularité
Un résultat classique, démontré en 1941 par H. Busemann et W. Mayer, et fréquemment cité en géométrie Finslérienne, affirme qu'une structure Finslérienne sur une variété est déterminée par la fonction distance associée. Malheureusement l'article original de Busemann-Mayer est d'une lecture difficile et la preuve ne semble jamais avoir l'objet d'une réfaction plus moderne et/ou plus pédagogique. Le but de cet exposé sera de revisiter le théorème de Busemann-Mayer et de faire le lien avec des recherches actuelles en géométrie métrique et en géométrie Finslérienne de basse régularité. Nous montrerons en particulier que la convexification d'une métrique pré-Finslérienne semi-continue supérieurement induit la même distance que la métrique pré-Finslérienne elle même. Nous montrerons aussi des résultats sur la dérivée métrique et la régularité des courbes minimisantes pour une métrique Finslérienne de basse régularité.
Le 29 novembre 2019
à 10:00
Séminaire de Géométrie
Salle 2
Marco Maculan IMJ
Variétés affines et de Stein en géométrie complexe et rigide
Le théorème GAGA de Serre affirme que, sur une variété algébrique complexe compacte, les objets holomorphes (les fonctions, les fibrés vectoriels, les faisceaux cohérents et leurs sections) sont algébriques. Sans hypothèse de compacité cela n'est pas vrai, mais on peut se demander si une variété qui se plonge de manière holomorphe dans un espace affine, peut y se plonger de manière algébrique. Un exemple classique de Serre montre que la réponse est négative. Dans un travail en commun avec J. Poineau, on étudie ce qui l'en est de la question analogue dans le cadre de la géométrie rigide. Malgré les similarités formelles des deux théories, les réponses auxquelles on aboutit sont quelque peu surprenantes.
Le 13 décembre 2019
à 10:00
Séminaire de Géométrie
Salle 2
Eric Balandraud IMB
Quelques applications géométriques du Combinatorial Nullstellensatz..
Dans un premier temps, je vous propose un (tout) petit peu de géométrie algébrique dans la présentation du Combinatorial Nullstellensatz, qui généralise aux polynômes multivariés le fait qu'un polynôme (univarié) de degré d ne peut admettre d+1 racines. Ce résultat formalisé 1999 avait permis de démontrer et généraliser de nombreux résultats. Et ce dans de nombreux domaines de mathématiques : géométrie discrète, combinatoire additive, coloration de graphes, caractérisation de sous-graphes. Je vais donc ensuite me concentrer sur deux applications de géométrie (affine) discrète sur les corps finis. La première décrit les hyperplans inclus l'ensemble diagonal (union des hyperplans d'équations X_i=X_j) de F_q^d. La seconde s'intéresse à la caractérisation d'un hyperplan par son intersection avec le cube dans F_p^n. Dans ces deux cas, la dimension critique est le cardinal du corps.
Le 20 décembre 2019
à 10:00
Séminaire de Géométrie
Salle 2
Florent Ygouf Tel Aviv
Dynamique isoperiodique dans l'espace de module des surfaces de translation.
Le feuilletage isoperiodique est un feuilletage des strates de l'espace de module des surfaces de translation. Il a été introduit dans les années 90, d'abord par Eskin et Kontsevitch puis par Calta et McMullen avant de devenir un objet important en dynamique de Teichmüller. Récemment, des résultats sur la dynamique de ses feuilles ont été obtenus. Le cas de la strate principle est maintenant bien compris grâce à des travaux de Mcmullen, Calsamiglia-Deroin-Francaviglia et Hamenstadt. Cependant, tous les autres cas restent entièrement ouverts. Je ferai un survol de ces notions et présenterai un résultat de classification pour la dynamique de certains sous feuilletages du feuilletage isoperiodique.
Les anciens séminaires